K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

\(\begin{cases} x-3y=-2\\2x+y=3 \end{cases} <=> \begin{cases} x-3(3-2x)=-2\\y=3-2x \end{cases} <=> \begin{cases} 7x=7\\y=3-2x \end{cases} \\<=> \begin{cases} x=1\\y=3-2.1 \end{cases} <=>\begin{cases} x=1\\y=1 \end{cases}\)

Ta có: \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\left(x+y\right)=2\\-\left(2x+3y\right)=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-2\\2x+3y=-9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\2\cdot\left(-2-y\right)+3y=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\-4-2y+3y+9=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-\left(-5\right)\\y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2+5=3\\y=-5\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)

7 tháng 10 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=1\\-2\left(2x-3y\right)=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=1\\2x-3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1=1\left(vôlý\right)\\2x-3y=1\end{matrix}\right.\)

Vậy: Hệ phương trình vô nghiệm

6 tháng 2 2022

Câu 1:

Thay \(x=\sqrt{2};y=2\sqrt{2}\) vào đồ thị hàm số \(y=ax^2\) ta có:

\(\left(\sqrt{2}\right)^2.a=2\sqrt{2}\Leftrightarrow2a=2\sqrt{2}\Leftrightarrow a=\sqrt{2}\)

Vậy \(a=\sqrt{2}\) thì đồ thị hàm số \(y=ax^2\) đi qua điểm \(\left(\sqrt{2};2\sqrt{2}\right)\)

b) \(\left\{{}\begin{matrix}2x+3y=-1\\x-2y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2.\left(3+2y\right)+3y=-1\\x=3+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7y=-7\\x=3+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3+2.\left(-1\right)=1\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \(\left(1;-1\right)\)

7 tháng 1 2018

a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

7 tháng 1 2018

a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)

b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)

AH
Akai Haruma
Giáo viên
8 tháng 5 2023

Lời giải:
$x+2y=4$

$3x+3y=1$

$\Rightarrow 3(x+2y)-(3x+3y)=4.3-1$

$\Leftrightarrow 3y=11$

$\Leftrightarrow y=\frac{11}{3}$

$x=4-2y=4-2.\frac{11}{3}=\frac{-10}{3}$

Vậy......

3 tháng 1 2020

\(\left\{{}\begin{matrix}x=2y\\4x-3y=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\8y-3y=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=-5\end{matrix}\right.\)

22 tháng 10 2023

\(\left\{{}\begin{matrix}\sqrt{2}x+2\sqrt{3}y=5\\3\sqrt{2}x-\sqrt{3}y=4,5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\sqrt{2}=5-2\sqrt{3}y\\3\sqrt{2}\cdot x-y\cdot\sqrt{3}=4,5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3\left(5-2\sqrt{3}y\right)-y\sqrt{3}=4,5\\x\sqrt{2}=5-2\sqrt{3}\cdot y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}15-7\sqrt{3}y=4,5\\x\sqrt{2}=5-2\sqrt{3}\cdot y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{10.5}{7\sqrt{3}}=\dfrac{\sqrt{3}}{2}\\x\sqrt{2}=5-2\sqrt{3}\cdot\dfrac{\sqrt{3}}{2}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\sqrt{2}\\y=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

12 tháng 11 2015

PT (1) <=> x = 3y + 3. Thay  x = 3y + 3 vào PT (2) ta có: \(\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-9=0\Leftrightarrow10y^2+10y-6=0\Leftrightarrow y=\frac{-5+\sqrt{85}}{10}\)hoặc \(y=\frac{-5-\sqrt{85}}{10}\)

- Nếu \(y=\frac{-5+\sqrt{85}}{10}\) \(\Rightarrow x=3y+3=\frac{15+3\sqrt{85}}{10}\)

- Nếu \(y=\frac{-5-\sqrt{85}}{10}\Rightarrow x=3y+3=\frac{15-3\sqrt{85}}{10}\)