Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-2x^3-x^2-2x+1=0\)
\(\Leftrightarrow x^4-3x^3+x^2+x^3-3x^2+x+x^2-3x+1=0\)
\(\Leftrightarrow x^2\left(x^2-3x+1\right)+x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x^2-3x+1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+1=0\\x^2+x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{3}{2}\right)^2-\frac{5}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}}\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2-\frac{5}{4}=0\)\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow x-\frac{3}{2}=\pm\sqrt{\frac{5}{4}}\)\(\Leftrightarrow x=\pm\frac{\sqrt{5}}{2}+\frac{3}{2}\)
mk chỉ giải đc có bài 1 thui nha bn
\(\frac{4}{x-2}+\frac{1}{x+3}=0\)
ĐKXĐ: x ≠ 2 và x ≠ -3
QĐKM:
⇔(x+3)4 + (x-2)1 = 0
⇔4x + 12 + x - 2 = 0
⇔4x + x = -12 + 2
⇔5x = -10
⇔x= -2
S={-2}
bài 1:
a) ĐKXĐ: x khác 0; x khác -1
\(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)
<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)
<=> (x - 1)(x + 1) + 1 - 2x = x
<=> x^2 - 2x = x
<=> x^2 - 2x - x = 0
<=> x^2 - 3x = 0
<=> x(x - 3) = 0
<=> x = 0 hoặc x - 3 = 0
<=> x = 0 hoặc x = 0 + 3
<=> x = 0 (ktm) hoặc x = 3 (tm)
=> x = 3
b) ĐKXĐ: x khác +-3; x khác -7/2
\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)
<=> 13x + 30 + x^2 = 12x + 42
<=> 13x + 30 + x^2 - 12x - 42 = 0
<=> x - 12 + x^2 = 0
<=> (x - 3)(x + 4) = 0
<=> x - 3 = 0 hoặc x + 4 = 0
<=> x = 0 + 3 hoặc x = 0 - 4
<=> x = 3 (ktm) hoặc x = -4 (tm)
=> x = -4
c) ĐKXĐ: x khác +-1
\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
<=> x(x + 1) - 2x = 0
<=> x^2 + x - 2x = 0
<=> x^2 - x = 0
<=> x(x - 1) = 0
<=> x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 0 + 1
<=> x = 0 (tm) hoặc x = 1 (ktm)
=> x = 0
d) \(\frac{x^2+2x}{x^2+1}-2x=0\)
<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)
<=> x(x + 2) - 2x(x^2 + 1) = 0
<=> x^2 - 2x^3 = 0
<=> x^2(1 - 2x) = 0
<=> x^2 = 0 hoặc 1 - 2x = 0
<=> x = 0 hoặc -2x = 0 - 1
<=> x = 0 hoặc -2x = -1
<=> x = 0 hoặc x = 1/2
bài 2:
(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0
<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0
<=> 2x^2 - 2x - 3x + 3 = 0
<=> 2x(x - 1) - 3(x - 1) = 0
<=> (2x - 3)(x - 1) = 0
<=> 2x - 3 = 0 hoặc x - 1 = 0
<=> 2x = 0 + 3 hoặc x = 0 + 1
<=> 2x = 3 hoặc x = 1
<=> x = 3/2 hoặc x = 1
bài 3:
(x^3 + x^2) + (x^2 + x) = 0
<=> x^3 + x^2 + x^2 + x = 0
<=> x^3 + 2x^2 + x = 0
<=> x(x^2 + 2x + 1) = 0
<=> x(x + 1)^2 = 0
<=> x = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 0 - 1
<=> x = 0 hoặc x = -1
\(x^4+2x^3-2x^2+2x-3=0\)
\(\Leftrightarrow\)\(x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0\)
\(\Leftrightarrow\)\(x^3\left(x-1\right)+3x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^3+3x^2+x+3\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\) (vì x^2 + 1 > 0 )
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Vậy....
\(a.2x^2+7x-9=0\\ \Leftrightarrow2\left(x^2+\frac{7}{2}x-\frac{9}{2}\right)=0\\\Leftrightarrow x^2+\frac{7}{2}x-\frac{9}{2}=0\\ \Leftrightarrow x^2+\frac{9}{2}x-x-\frac{9}{2}=0\\\Leftrightarrow x\left(x+\frac{9}{2}\right)-\left(x+\frac{9}{2}\right)=0\\\Leftrightarrow \left(x-1\right)\left(x+\frac{9}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+\frac{9}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{9}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-\frac{9}{2}\right\}\)
\(b.x^2-4x+3=0\\\Leftrightarrow x^2-x-3x+3=0\\ \Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\\Rightarrow \left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;3\right\}\)
Bài 1:
a) \(\frac{2x+1}{3}-\frac{x}{4}=2\)
\(\Leftrightarrow\frac{4\left(2x+1\right)}{12}-\frac{3x}{12}-\frac{24}{12}=0\)
\(\Leftrightarrow8x+4-3x-24=0\)
\(\Leftrightarrow5x-20=0\)
\(\Leftrightarrow5x=20\)
\(\Leftrightarrow x=4\)
Vậy \(S=\left\{4\right\}\)
b) \(\frac{2x+5}{2x}-\frac{x}{x+5}=0\)
ĐKXĐ: \(x\ne0;x\ne-5\)
\(\Leftrightarrow\frac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\frac{x\left(2x+5\right)}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2-5x=0\)
\(\Leftrightarrow10x+25=0\)
\(\Leftrightarrow10x=-25\)
\(\Leftrightarrow x=-\frac{5}{2}\left(TM\right)\)
Vậy \(S=\left\{-\frac{5}{2}\right\}\)
#Học tốt!
\(x^4+2x^3-2x^2+2x-3=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+3x^2+x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^2\left(x+3\right)+\left(x+3\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)
\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)
\(=\left(x^2+1\right)\left(x+1\right)^2\)
\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)
\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)
\(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27\)
\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)
\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)
\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)
\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)
\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)
\(A=x^4-2x^3+2x^2-2x+1\)
\(A=\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)\)
\(A=\left(x^2-x\right)^2+\left(x-1\right)^2\)
\(A=x^2\left(x-1\right)^2+\left(x-1\right)^2\)
\(A=\left(x-1\right)^2\left(x^2+1\right)\)
\(A=0\)
\(\Rightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
\(x^2+1=0\) vô nghiệm
KL: \(x=1\)
Còn 1 bài nữa thôi đúng k Ngô Thị Phương Thảo