![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo định lý Viéte kết hợp với giả thiết ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}ab< 0\\ac>0\end{matrix}\right.\)
Ta cần chứng minh: \(\left\{{}\begin{matrix}x_3+x_4=\frac{-b}{c}>0\\x_3x_4=\frac{a}{c}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}bc< 0\\ac>0\end{matrix}\right.\) (*)
TH1: \(a>0\Leftrightarrow\left\{{}\begin{matrix}c>0\\b< 0\end{matrix}\right.\) \(\Leftrightarrow\) (*) luôn đúng
TH2: \(a< 0\Leftrightarrow\left\{{}\begin{matrix}c< 0\\b>0\end{matrix}\right.\) \(\Leftrightarrow\) (*) luôn đúng
Ta có đpcm.
Áp dụng BĐT Cauchy:
\(x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}=4\sqrt[4]{\frac{c}{a}\cdot\frac{a}{c}}=4\)
Dấu "=" xảy ra khi \(x_1=x_2=x_3=x_4\) \(\Leftrightarrow a=c\)
\(ax^2+bx+c=0\) (1) có 2 nghiệm dương \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=b^2-4ac\ge0\\x_1+x_2=-\frac{b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)
Xét \(cx^2+bx+a=0\) (2)
\(\Delta=b^2-4ac\ge0\Rightarrow\left(2\right)\) có 2 nghiệm
\(\left\{{}\begin{matrix}x_3+x_4=-\frac{b}{c}\\x_3x_4=\frac{a}{c}>0\end{matrix}\right.\)
Do \(\left\{{}\begin{matrix}-\frac{b}{a}>0\\\frac{c}{a}>0\end{matrix}\right.\) \(\Rightarrow\left(-\frac{b}{a}\right):\left(\frac{c}{a}\right)>0\Rightarrow-\frac{b}{c}>0\)
\(\Rightarrow\) (2) cũng có 2 nghiệm dương
Do \(\left\{{}\begin{matrix}-\frac{b}{a}>0\\\frac{c}{a}>0\end{matrix}\right.\) \(\Rightarrow a;c\) cùng dấu và trái dấu b
Ko mất tính tổng quát, giả sử \(a;c>0\) và \(b< 0\) ; đặt \(d=-b>0\)
\(\Rightarrow d^2\ge4ac\Rightarrow d\ge2\sqrt{ac}\)
\(A=x_1+x_2+x_3+x_4=-\frac{b}{a}-\frac{b}{c}=\frac{d}{a}+\frac{d}{c}=d\left(\frac{1}{a}+\frac{1}{c}\right)\)
\(A\ge2d\sqrt{\frac{1}{ac}}\ge2.2\sqrt{ac}.\sqrt{\frac{1}{ac}}=4\) (đpcm)
Dấu "=" xảy ra khi \(a=c=\frac{1}{2}d\) hay \(a=c=-\frac{1}{2}b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Điều kiện a,b,c không cho làm sao suy được mấy cái đó mà bảo chứng minh b.
![](https://rs.olm.vn/images/avt/0.png?1311)
cái hệ thức cuối phải sửa thành ( pc - ar )^2 = (pb - aq )(cq- rb ) . bạn gõ sai rồi :))
giả sử x0 là nghiệm chung của hai phương trình :
\(\Rightarrow\)ax02 + bx0 + c = 0 ( 1 )
px02 + qx0 + c = 0 ( 2 )
vì a,p khác 0 nên nhân ( 1 ) với p ; nhân ( 2 ) với a , ta có :
\(\hept{\begin{cases}pax_0^2+pbx_0+pc=0\\pax_0^2+qax_0+ar=0\end{cases}}\)\(\Rightarrow\left(aq-pb\right)x_0+\left(ar-pc\right)=0\)
Tương tự : \(\left(aq-pb\right)x_0^2+\left(cq-rb\right)=0\Rightarrow\left(aq-pb\right)^2x_0^2=\left(pc-ar\right)^2\)
và \(\left(aq-pb\right)^2x_0^2=\left(rb-cq\right)\left(aq-pb\right)\)
\(\Rightarrow\left(pc-ar\right)^2=\left(rb-cq\right)\left(aq-pb\right)\Rightarrow\left(pc-ar\right)^2=\left(pb-aq\right)\left(cq-rb\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\Delta1=\left(2b\right)^2-4ac=4b^2-4ac\)
\(\Delta2=\left(2c\right)^2-4ab=4c^2-4ab\)
\(\Delta3=\left(2a\right)^2-4bc=4a^2-4bc\)
\(\Rightarrow\Delta=\Delta1+\Delta2+\Delta3=4b^2-4ac+4c^2-4ab+4a^2-4bc\)
\(=2\left(2b^2-2ac+2c^2-2ab+2a^2-2bc\right)\)
\(=2\left(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\right)\)
\(=2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
Vậy với mọi a,b,c thì ít nhất một trong các pt sau có nghiệm
ax^2 + 2bx + c = 0 (1)
bx^2 + 2cx + a = 0 (2)
cx^2 + 2ax + b = 0 (3)
Xét:
Δ1 = b² - ac
Δ2 = c² - ab
Δ3 = a² - bc
ta có 2(Δ1+ Δ2 + Δ3)
= 2(b² - ac) + (c² - ab) + (a² - bc)
= (a² - 2ab + b² ) + (b² - 2bc + c²) + (c² - 2ac + a²)
= (a - b)² + (b - c)² + (a - c)² ≥ 0
=> Δ1+ Δ2 + Δ3 ≥ 0
=> trong 3Δ: Δ1;Δ2; Δ3 phải có ít nhất 1Δ ≥ 0
Vậy ít nhất 1phương trình có nghiệm => đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Delta=b^2-4ac\ge0\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{matrix}\right.\)
Do vai trò của 2 nghiệm như nhau nên giả sử \(x_1=2x_2\)
Theo vào Viet ta được:
\(\left\{{}\begin{matrix}2x_2+x_2=-\frac{b}{a}\\2x_2^2=\frac{c}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-\frac{b}{3a}\\x_2^2=\frac{c}{2a}\end{matrix}\right.\)
\(\Rightarrow\left(-\frac{b}{3a}\right)^2=\frac{c}{2a}\Rightarrow2b^2=9ac\)
\(\text{Δ}=b^2-4ac\)
Nếu Δ>0 thì phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\text{Δ}}}{2a}\\x_2=\dfrac{-b+\sqrt{\text{Δ}}}{2a}\end{matrix}\right.\)
Nếu Δ=0 thì phương trình có nghiệm kép là x=-b/2a
Nếu Δ<0 thì phương trình vô nghiệm