Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $(x-3)^2=a$. Khi đó pt đã cho tương đương với:
$(x^2-6x+9-9)^2+13(x-3)^2-77=0$
$\Leftrightarrow [(x-3)^2-9]^2+13(x-3)^2-77=0$
$\Leftrightarrow (a-9)^2+13a-77=0$
$\Leftrightarrow a^2-5a+4=0$
$\Leftrightarrow (a-1)(a-4)=0$
$\Leftrightarroe a=1$ hoặc $a=4$
Đến đây thì đơn giản rồi.
\(\left(1+\sqrt{2}\right)x^2-x-\sqrt{2}=0\)
\(\Leftrightarrow\left(1+\sqrt{2}\right)x^2-x-\sqrt{2}x-\sqrt{2}=0\)
\(\Leftrightarrow\left(1+\sqrt{2}\right)x^2-x\left(1+\sqrt{2}\right)+\sqrt{2}\left(x-1\right)=0\)
\(\Leftrightarrow\left(1+\sqrt{2}\right)x\left(x-1\right)+\sqrt{2}\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+\sqrt{2}x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2+\sqrt{2}\end{cases}}\)
Chúc bạn học tốt !!!
bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra
bài 1 câu c "
\(4x^2-25+k^2+4kx=0.\)
thay x=-2 vào ta được
\(16-25+k^2+-8k=0\)
\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)
\(k\left(k+1\right)-9\left(k+1\right)=0\)
\(\left(k+1\right)\left(k-9\right)=0\)
vậy k=1 , 9 thì pt nhận x=-2
bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra
bài 3 cũng éo hiểu xác định a ? a ở đâu
1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm
. kết luận của chúa Pain đề như ###
=>x^4+2x^2+1-4x^2-144x-1296=0
=>(x^2+1)^2-(2x+36)^2=0
=>(x^2+1-2x-36)(x^2+1+2x+36)=0
=>x^2-2x-35=0
=>(x-7)(x+5)=0
=>x=7 hoặc x=-5
a,thay k=0 vào PT ta có
\(9x^2-25=0\)
\(\Leftrightarrow9\left(x^2-\left(\frac{5}{3}\right)^2\right)=0\)
\(\Leftrightarrow9\left(x-\frac{5}{3}\right)\left(x+\frac{5}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}=0\\x+\frac{5}{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-\frac{5}{3}\end{cases}}\)
b,thay x=1 vào PT ta có
\(9-25-k^2-2k=0\)
\(\Leftrightarrow k^2+2k+16=0\)
\(\Leftrightarrow\left(k+1\right)^2+15\ge0\)
Vậy ko có giá tri k thỏa mãn ĐK bài toán
`Answer:`
`a)` Thay `k=0` vào phương trình được:
`9x^2-25=0`
`<=>(3x-5)(3x+5)=0`
`<=>3x+5=0` hoặc `3x-5=0`
`<=>x=-5/3` hoặc `x=5/3`
`b)` Thay `x=-1` vào phương trình được:
`9-25-k^2+2k=0`
`<=>-k^2+2k-16=0`
`<=>-(k^2-2k+1)-15=0`
`<=>-(k-1)^2-15=0`
Mà `-(k-1)^2<=0∀k=>-(k-1)^2-15<0`
Vậy phương trình vô nghiệm.
a. Với a = -3 ta được:
\(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}+\dfrac{27-3}{x^2-9}=0\)
\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{24}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow x^2+6x+9-x^2+6x-9+24=0\)
\(\Leftrightarrow12x+24=0\)
\(\Leftrightarrow x=-2\)
Giải phương trình :
\(\dfrac{x-a}{x+a}-\dfrac{x+a}{x-a}+\dfrac{3a^2+a}{x^2-a^2}=0\)
a) Với a = -3
\(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}=0\)
ĐKXĐ : \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)
Ta có : \(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}\)
\(\Leftrightarrow\) \(\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{27+3}{\left(x+3\right)\left(x-3\right)}=0\)
Khử mẫu ta có : \(\left(x-3\right)^2-\left(x+3\right)^2+27+3=0\)
⇔ \(x^2+6x+9-x^2+6x-9+30=0\)
\(\Leftrightarrow12x+30=0\)
\(\Leftrightarrow12x=-30\)
\(\Leftrightarrow x=-\dfrac{5}{2}\)
Tập nghiệm của pt là: \(S=\left\{-\dfrac{5}{2}\right\}\)
b) Với a = 1
\(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)
ĐKXĐ : \(\left\{{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne1\end{matrix}\right.\)
Ta có : \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)
\(\Leftrightarrow\) \(\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3+3}{\left(x+1\right)\left(x-1\right)}=0\)
Khử mẫu ta có : \(\left(x-1\right)^2-\left(x+1\right)^2+6=0\)
\(\Leftrightarrow x^2+x-1-x^2+x+1+6=0\)
\(\Leftrightarrow2x+6=0\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
Tập nghiệm của pt là : \(S=\left\{-3\right\}\)
a)(x-2)(x+2)(x^2-10)=72
<=>(x^2-4)(x^2-10)=72
<=>x^4-14x^2+40=72
<=>x^4-14x^2-32=0
<=>x^4-16x^2+2x^2-32=0
<=>x^2(x^2-16)+2(x^2-16)=0
<=>(x^2-16)(x^2+2)=0
<=>(x-4)(x+4)(x^2+2)=0
<=>x-4=0 hoac x+4=0 (vi x^2+2>0 voi moi x)
<=>x=4,x=-4
S={4,-4}
a)(x-2))x+2)(x^2-10)=72
=(x^2-4)(x^2-10)=72
Đặt x^2-7 là t
Phương trình trở thành (t+3)(t-3)=72
t^2-9=72
t^2=81
suy ra t= cộng trừ 9
*t=9
x^2-7=9
x^2=16
suy ra x=cộng trừ 4
*t=-9
x^2-7=-9
x^2=-2
suy ra x không xác định
vậy S={cộng trừ 4}
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
\(x^2-10^x+16=0\)
\(\Leftrightarrow x^2-8x-2x+16=0\)
\(\Leftrightarrow\left(x-8\right).\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy ....................
Chúc bạn học tốt!