K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

\(x^2-10^x+16=0\)

\(\Leftrightarrow x^2-8x-2x+16=0\)

\(\Leftrightarrow\left(x-8\right).\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

Vậy ....................

Chúc bạn học tốt!

AH
Akai Haruma
Giáo viên
30 tháng 8 2023

Lời giải:

Đặt $(x-3)^2=a$. Khi đó pt đã cho tương đương với:

$(x^2-6x+9-9)^2+13(x-3)^2-77=0$

$\Leftrightarrow [(x-3)^2-9]^2+13(x-3)^2-77=0$

$\Leftrightarrow (a-9)^2+13a-77=0$

$\Leftrightarrow a^2-5a+4=0$

$\Leftrightarrow (a-1)(a-4)=0$

$\Leftrightarroe a=1$ hoặc $a=4$

Đến đây thì đơn giản rồi.

23 tháng 9 2019

\(\left(1+\sqrt{2}\right)x^2-x-\sqrt{2}=0\)

\(\Leftrightarrow\left(1+\sqrt{2}\right)x^2-x-\sqrt{2}x-\sqrt{2}=0\)

\(\Leftrightarrow\left(1+\sqrt{2}\right)x^2-x\left(1+\sqrt{2}\right)+\sqrt{2}\left(x-1\right)=0\)

\(\Leftrightarrow\left(1+\sqrt{2}\right)x\left(x-1\right)+\sqrt{2}\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+\sqrt{2}x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2+\sqrt{2}\end{cases}}\)

Chúc bạn học tốt !!!

20 tháng 3 2018

bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra 

bài 1 câu c "

\(4x^2-25+k^2+4kx=0.\)

thay x=-2 vào ta được

\(16-25+k^2+-8k=0\)

\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)

\(k\left(k+1\right)-9\left(k+1\right)=0\)

\(\left(k+1\right)\left(k-9\right)=0\)

vậy k=1 , 9 thì pt nhận x=-2

bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra 

bài 3 cũng éo hiểu xác định a ? a ở đâu

1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm

. kết luận của chúa Pain đề như ###

=>x^4+2x^2+1-4x^2-144x-1296=0

=>(x^2+1)^2-(2x+36)^2=0

=>(x^2+1-2x-36)(x^2+1+2x+36)=0

=>x^2-2x-35=0

=>(x-7)(x+5)=0

=>x=7 hoặc x=-5

2 tháng 5 2018

a,thay k=0 vào PT ta có

\(9x^2-25=0\)

\(\Leftrightarrow9\left(x^2-\left(\frac{5}{3}\right)^2\right)=0\)

\(\Leftrightarrow9\left(x-\frac{5}{3}\right)\left(x+\frac{5}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}=0\\x+\frac{5}{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-\frac{5}{3}\end{cases}}\)

b,thay x=1 vào PT ta  có

\(9-25-k^2-2k=0\)

\(\Leftrightarrow k^2+2k+16=0\)

\(\Leftrightarrow\left(k+1\right)^2+15\ge0\)

Vậy ko có giá tri k thỏa mãn ĐK bài toán

22 tháng 2 2022

`Answer:`

`a)` Thay `k=0` vào phương trình được:

`9x^2-25=0`

`<=>(3x-5)(3x+5)=0`

`<=>3x+5=0` hoặc `3x-5=0`

`<=>x=-5/3` hoặc `x=5/3`

`b)` Thay `x=-1` vào phương trình được:

`9-25-k^2+2k=0`

`<=>-k^2+2k-16=0`

`<=>-(k^2-2k+1)-15=0`

`<=>-(k-1)^2-15=0`

Mà `-(k-1)^2<=0∀k=>-(k-1)^2-15<0`

Vậy phương trình vô nghiệm.

8 tháng 2 2018

a. Với a = -3 ta được:

\(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}+\dfrac{27-3}{x^2-9}=0\)

\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{24}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9+24=0\)

\(\Leftrightarrow12x+24=0\)

\(\Leftrightarrow x=-2\)

8 tháng 2 2018

Giải phương trình :

\(\dfrac{x-a}{x+a}-\dfrac{x+a}{x-a}+\dfrac{3a^2+a}{x^2-a^2}=0\)

a) Với a = -3

\(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}=0\)

ĐKXĐ : \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)

Ta có : \(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}\)

\(\Leftrightarrow\) \(\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{27+3}{\left(x+3\right)\left(x-3\right)}=0\)

Khử mẫu ta có : \(\left(x-3\right)^2-\left(x+3\right)^2+27+3=0\)

\(x^2+6x+9-x^2+6x-9+30=0\)

\(\Leftrightarrow12x+30=0\)

\(\Leftrightarrow12x=-30\)

\(\Leftrightarrow x=-\dfrac{5}{2}\)

Tập nghiệm của pt là: \(S=\left\{-\dfrac{5}{2}\right\}\)

b) Với a = 1

\(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)

ĐKXĐ : \(\left\{{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne1\end{matrix}\right.\)

Ta có : \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)

\(\Leftrightarrow\) \(\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3+3}{\left(x+1\right)\left(x-1\right)}=0\)

Khử mẫu ta có : \(\left(x-1\right)^2-\left(x+1\right)^2+6=0\)

\(\Leftrightarrow x^2+x-1-x^2+x+1+6=0\)

\(\Leftrightarrow2x+6=0\)

\(\Leftrightarrow2x=-6\)

\(\Leftrightarrow x=-3\)

Tập nghiệm của pt là : \(S=\left\{-3\right\}\)

1 tháng 2 2016

a)(x-2)(x+2)(x^2-10)=72

<=>(x^2-4)(x^2-10)=72

<=>x^4-14x^2+40=72

<=>x^4-14x^2-32=0

<=>x^4-16x^2+2x^2-32=0

<=>x^2(x^2-16)+2(x^2-16)=0

<=>(x^2-16)(x^2+2)=0

<=>(x-4)(x+4)(x^2+2)=0

<=>x-4=0 hoac x+4=0 (vi x^2+2>0 voi moi x)

<=>x=4,x=-4

S={4,-4}

 

 

31 tháng 1 2016

a)(x-2))x+2)(x^2-10)=72

=(x^2-4)(x^2-10)=72

Đặt x^2-7 là t

Phương trình trở thành (t+3)(t-3)=72

                                    t^2-9=72

                                    t^2=81

                         suy ra t= cộng trừ 9

*t=9

x^2-7=9

x^2=16

suy ra x=cộng trừ 4

*t=-9

x^2-7=-9

x^2=-2

suy ra x không xác định

vậy S={cộng trừ 4}

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự