\(x^2-11=0\)

\(b,x^2-2\sqrt{13}x+13=0...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

a) \(x^2-11=0\)

<=> \(x^2-\sqrt{11}=0\)

<=> \(\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)=0\)

<=> \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{11}\\x=-\sqrt{11}\end{matrix}\right.\) => x = \(\pm\sqrt{11}\) Vậy S ={ \(\pm\sqrt{11}\)}

b) \(x^2-2\sqrt{13}x+13=0\)

\(\Leftrightarrow\left(x-\sqrt{13}\right)^2=0\)

=> x = \(\sqrt{13}\)

Vậy S = {\(\sqrt{13}\) }

\(c\)) \(\sqrt{x^2-10x+25}=7-2x\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\)

\(\Leftrightarrow\left|x-5\right|=7-2x\)

=> Có 2 TH xảy ra

* Khi x - 5 \(\ge0\Leftrightarrow x\ge5\) Ta có PT :

x - 5 = 7 - 2x

<=> 3x = 12

=> x= 4 (KTM)

* Khi x - 5 < 0 => x < 5

Ta có pT

-x + 5 = 7-2x

<=> x = 2 (TM)

Vậy S = { 2 }

\(a\text{)} x^2-11=0\\ x^2=11\\ x=\pm\sqrt{11}\)

\(b\text{)}\:x^2-2\sqrt{13x}+13=0\\ \left(x-\sqrt{13}\right)^2=0\\ x-\sqrt{13}=0\\ x=\sqrt{13}\)

\(c\text{)}\:\sqrt{x^2-10x+25}=7-2x\\ \left|x-5\right|=7-2x\\ \Rightarrow\left[{}\begin{matrix}x-5=7-2x\left(với\:x\ge5\right)\\5-x=7-2x\left(với\:x< 5\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

3 tháng 12 2016

Bài 1:

\(x^4+2x^3+10x-25=0\)

\(\Leftrightarrow x^4+2x^3-5x^2+5x^2+10x-25=0\)

\(\Leftrightarrow x^2\left(x^2+2x-5\right)+5\left(x^2+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2+5\right)\left(x^2+2x-5\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5=0\\x^2+2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5>0\forall x\rightarrow Vn\\\Delta_{x^2+2x-5}=2^2-\left[-4\left(1.5\right)\right]=24\end{array}\right.\)

\(\Leftrightarrow x_{1,2}=\frac{-2\pm\sqrt{24}}{2}\)

 

3 tháng 12 2016

Bài 2:

Đặt \(\begin{cases}\sqrt{x-1}=a\left(a\ge1\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}\)(*) hệ đầu thành:

\(\begin{cases}3a+2b=13\left(1\right)\\2a-b=4\left(2\right)\end{cases}\).Từ \(\left(2\right)\Rightarrow b=2a-4\) thay vào (1) ta có:

\(\left(1\right)\Rightarrow3a+2\left(2a-4\right)=13\)

\(\Rightarrow3a+4a-8=13\Rightarrow7a=21\Rightarrow a=3\) (thỏa mãn)

\(a=3\Rightarrow b=2a-4=2\cdot3-4=2\) (thỏa mãn)

Thay \(\begin{cases}a=3\\b=2\end{cases}\) vào (*) ta có:

(*)\(\Leftrightarrow\begin{cases}\sqrt{x-1}=3\\\sqrt{y}=2\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=9\\y=4\end{cases}\)\(\Leftrightarrow\begin{cases}x=10\\y=4\end{cases}\)

9 tháng 9 2017

\(\sqrt{x^2-2x+1}\) + \(\sqrt{x^2-4x+4}\) = 3

<=> \(\sqrt{\left(x-1\right)^2}\)+ \(\sqrt{\left(x-2\right)^2}\)= 3

<=> \(\left|x-1\right|\)+\(\left|x-2\right|\)=3

<=> x - 1 + x - 2 = 3

<=> 2x - 3 = 3

<=> x = \(\dfrac{6}{2}\)= 3

b ,

\(\sqrt{x^2-10x+25}=3-19x\)

<=>\(\sqrt{\left(x-5\right)^2}=3-19x\)

<=> \(\left|x-5\right|=3-19x\)

<=> \(x-5=3-19x\)

\(\Leftrightarrow x+19x=3+5\)

\(\Leftrightarrow20x=8\Leftrightarrow x=\dfrac{8}{20}=\dfrac{2}{5}\)

8 tháng 9 2017

a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)

Có: \(VT=\left|1-x\right|+\left|x-2\right|\)

\(\ge\left|1-x+x-2\right|=3=VP\)

Khi \(x=0;x=3\)

b)\(\sqrt{x^2-10x+25}=3-19x\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)

\(\Leftrightarrow\left|x-5\right|=3-19x\)

\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)

\(\Leftrightarrow-360x^2+104x+16=0\)

\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)

\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)

c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)

\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)

\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

6 tháng 4 2020

bạn giải theo delta nha :) mình vd một câu đó

\(1.x^2-11x+30=0\)

\(\Delta=\left(-11\right)^2-4.1.30=1>0\)

Do đó pt có 2 nghiệm phân biệt là:

\(x_1=\frac{11+\sqrt{1}}{2}=6;x_2=\frac{11-\sqrt{1}}{2}=5\)

6 tháng 4 2020

cảm ơn bạn

30 tháng 8 2019

a,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\) (*)(đk \(x\ge-2\))

<=> \(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{\left(x+2\right)-6\sqrt{x+2}+9}\)=1

<=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|\)=1 (1)

TH1: \(0\le\sqrt{x+2}< 2\)

Từ (1) =>\(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)

<=> \(5-2\sqrt{x+2}=1\) <=> \(2\sqrt{x+1}=4\) <=> \(\sqrt{x+1}=2\)

<=> \(x+1=4\) <=> x=3(không t/m \(\sqrt{x+2}\le2\))

TH2 : \(2\le\sqrt{x+2}\le3\)

Từ (1) =>\(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)

<=> \(1=1\) (luôn đúng)

Từ TH2 <=> 4\(\le x+2\le9\) <=> \(2\le x\le7\)

TH3 \(\sqrt{x+2}>3\)

Từ (1) => \(\sqrt{x+2}-2+\sqrt{x+2}-3=1\)

<=> \(2\sqrt{x+2}=6\) <=> \(\sqrt{x+2}=3\) <=> \(x+2=9\) <=> x=7 (không t/m \(\sqrt{x+2}>3\))

Vậy pt (*) có tập nghiệm S=\(\left\{2\le x\le7\right\}\)

b, \(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\) (*) (đk :\(4\le x\le6\))

Vs a,b \(\ge0\) ta có \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a^2+b^2\right)}\)(tự CM nha)

Dấu "=" xảy ra <=> a=b

Áp dụng bđt trên ta có: \(\sqrt{6-x}+\sqrt{x-4}\le\sqrt{2\left(6-x+x-4\right)}=\sqrt{2.2}=2\)

<=> \(\sqrt{6-x}+\sqrt{x-4}\le2\)(1)

Lại có: \(x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

<=> \(x^2-10x+27\ge2\) (2)

Từ (1),(2) => Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}6-x=x-4\\x-5=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}6+4=2x\\x=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=5\\x=5\end{matrix}\right.\left(tm\right)\)

Vậy pt (*) có tập nghiệm S=\(\left\{5\right\}\)

c, \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)(*) (đk: x\(\ge0\))

<=> \(x\left(x-2\right)-\sqrt{x}\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\left(x-\sqrt{x}\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\sqrt{x}\left(\sqrt{x}-1\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\left(\sqrt{x}-1\right)\left[\sqrt{x}\left(x-2\right)-4\right]=0\)

<=> \(\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}\left(x-2\right)-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}\left(x-2\right)=4\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x\left(x-2\right)^2=16\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\x\left(x^2-4x+4\right)-16=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=1\\x^3-4x^2+4x-16=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=1\\x^2\left(x-4\right)+4\left(x-4\right)=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\\left(x^2+4\right)\left(x-4\right)=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\left(tm\right)\)

Vậy pt (*) có tập nghiệm S=\(\left\{1;4\right\}\)

31 tháng 8 2019

d) x2+3x+1=(x+3)\(\sqrt{x^2+1}\)

<=>(\(\sqrt{x^2+1}-3x+3\sqrt{x^2+1}-\left(x^2+1\right)=0\)

<=>\(\left(\sqrt{x^2+1}-3\right)\left(x-\sqrt{x^2+1}\right)=0\)

<=>\(\sqrt{x^2+1}=3\) hoặc \(x=\sqrt{x^2+1}\)

=>x=\(2\sqrt{2}\)

20 tháng 1 2019

a.

\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)

\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)

\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)

b.

\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)

\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)

\(\Leftrightarrow x^2-8=5x+1\)

\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)

............................

tương tự ..

c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)

=>x-5=0 hoặc x+5=1

=>x=-4 hoặc x=5

d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=7/2 hoặc x=-3/2

e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

=>x-2=0 hoặc 3 căn x+2=1

=>x=2 hoặc x+2=1/9

=>x=-17/9 hoặc x=2