Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(9x^2+5x+2=0\)
\(\Delta=5^2-4\cdot9\cdot2=-47< 0\)
Vô nghiệm
b)\(5x^2+4x-2=0\)
\(\Delta=4^2-4\cdot5\cdot\left(-2\right)=56\)
\(x_{1,2}=\frac{-4\pm\sqrt{56}}{10}\)
c)\(2x^3+7x^2+7x+2=0\)
\(\Rightarrow2x^3+6x^2+4x+x^2+3x+2=0\)
\(\Rightarrow2x\left(x^2+3x+2\right)+\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x^2+3x+2\right)\left(2x+1\right)=0\)
\(\Rightarrow\left(x^2+2x+x+2\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[x\left(x+2\right)+\left(x+2\right)\right]\left(2x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)
=>x=-1 hoặc x=-2 hoặc \(x=-\frac{1}{2}\)
2x5 - 7x4 + 5x3 + 5x2 - 7x + 2 = 0
<=> 2x5-4x4-3x4+6x3-x3+2x2+3x2-6x-x+2=0
<=> 2x4(x-2)-3x3(x-2)-x2(x-2)+3x(x-2)-(x-2)=0
<=>(x-2)(2x4-3x3-x2+3x-1)=0
<=>(x-2)(2x4-x3-2x3+x2-2x2+x+2x-1)=0
<=>(x-2)[x3(2x-1)-x2(2x-1)-x(2x-1)+2x-1]=0
<=>(x-2)(2x-1)(x3-x2-x+1)=0
<=>(x-2)(2x-1)[x2(x-1)-(x-1)]=0
<=>(x-2)(2x-1)(x-1)(x2-1)=0
<=>(x-2)(2x-1)(x-1)2(x+1)=0
=> x-2=0 => x=2
hoặc 2x-1=0=>x=1/2
hoặc x-1=0=>x=1
hoặc x+1=0=>x=-1
Vậy...
\(2x^5-7x^4+5x^3+5x^2-7x+2=0\)
\(\Leftrightarrow\left(2x^5-4x^4+2x^3\right)-\left(3x^4-6x^3+3x^2\right)-\left(3x^3-6x^2+3x\right)+\left(2x^2-4x+2\right)=0\)
\(\Leftrightarrow2x^3\left(x^2-2x+1\right)-3x^2\left(x^2-2x+1\right)-3x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(2x^3-3x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^3+2x^2-5x^2-5x+2x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[2x^2\left(x+1\right)-5x\left(x+1\right)+2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(2x^2-5x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(2x^2-4x-x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left[2x\left(x-2\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\)\(x-1=0\)
hoặc \(x+1=0\)
hoặc \(x-2=0\)
hoặc \(2x-1=0\)
\(\Leftrightarrow\)\(x=1\)
hoặc \(x=-1\)
hoặc \(x=2\)
hoặc \(x=\frac{1}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-1;2;\frac{1}{2}\right\}\)
a) 5x2 -8x +3 -0
=> 5x2 -5x -3x +3 =0
=>5x(x-1) -3(x-1) =0
=> (x-1)(5x -3) =0
=>x-1=0 hoặc 5x-3=0
+ nếu x-1=0 thì x =1
+nếu 5x-3=0 thì 5x=3=>x=3/5
b)x3 -7x +6 =0
=>x3 -x-6x+6 =0
=>x(x2 -1)-6(x-1) =0
=>x(x-1)(x+1) -6(x-1) =0
=>(x-1)[x(x+1)-6]=0
=>x-1=0 hoặc x(x+1)-6 =0
+ nếu x -1=0 thì x=1
+nếu x(x+1)-6 =0 thì x(x+1) =6 => x=2
a.5x2 -8x + 3=0
<=>5x2 -5x -3x +3=0
<=>(5x2-5x)(3x-3)=0
<=>5x(x-1) - 3(x-1)=0
<=>(x-1)(5x-3)=0
<=>\(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
b)x3-7x+6=0
<=>x3-x-6x+6=0
<=>(x3-x)-(6x-6)=0
<=>x(x2-1)-6(x-1)=0
<=>x(x+1)(x-1)-6(x-1)=0
<=>(x-1)[x(x+1)-6]=0
<=>\(\orbr{\begin{cases}x-1=0\\x\left(x+1\right)-6=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}\)
a) \(\left(x^2+4x+3\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(x-3\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Vậy tập nghiệm PT \(S=\left\{-3;-1;2;3\right\}\)
b) \(\left(x^2-7x+12\right)\left(x^2+8x+7\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x+1\right)\left(x+7\right)=0\)
=> \(\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+1=0\\x+7=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=4\end{cases}}\) hoặc \(\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)
Vậy tập nghiệm PT \(S=\left\{-7;-1;3;4\right\}\)
a, \(\left(x^2+4x+3\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1;-3\\x=3;2\end{cases}}\)
b, \(\left(x^2-7x+12\right)\left(x^2+8x+7\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x+1\right)\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4;3\\x=-1;-7\end{cases}}\)
a) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy .................
b) \(\left(x-3\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+3\right)\left(2x+1+x-3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ...............
c) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
P/s: tới đây bn tự giải tiếp nha
\(1;x^2+7x+10=0\Rightarrow x^2+2x+5x+10=0\Rightarrow x\left(x+2\right)+5\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+5\right)=0\)
=> x + 2 = 0 hoặc x + 5 = 0
=> x = -2 hoặc x = - 5
2, x^4 - 5x^2 + 4 = 0
x^4 - 4x^2 - x^2 + 4 = 0
x^2 ( x^2 - 4) - ( x^2 - 4) = 0
( x^2 - 1)( x^2 - 4) = 0
( x - 1 )( x + 1)( x - 2)( x + 2) = 0
=> x= 1 hoặc x= -1 hoặc x = 2 hoặc x = - 2
Đúng cho mi8nhf mình giải tiếp cho
Bài 2
Ta có :
\(x^2+5x+6=\left(x+2\right)\left(x+3\right)\)
\(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)
\(x^2+9x+20=\left(x+4\right)\left(x+5\right)\)
Khi đó:
\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}=\dfrac{3}{40}\)
=> \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
Giải phương trình ta được x = 3
a) Gần giống cho nó giống luôn.
cần thêm (-x^3+2x^2-x) là giống
\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)
\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)
\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)
Nghiệm duy nhất: x=1
a. Ta có:
\(x^2-6x+3=0\Leftrightarrow x^2-2.x.3+3^2-6=0\)
\(\Leftrightarrow\left(x-3\right)^2-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\sqrt{6}\\x-3=-\sqrt{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)
Ta có:
\(x^2-7x+14=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{7}{2}+\dfrac{49}{4}+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}=0\)
Ta có: \(\left(x+\dfrac{7}{2}\right)^2\ge0\)
=> \(\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}>0\)
=> pt vô nghiệm
Ta có : 7x2 - 5x + 2
= 7( x2 - 5/7x + 25/196 ) + 31/28
= 7( x - 5/14 )2 + 31/28 ≥ 31/28 > 0 ∀ x
=> Phương trình vô nghiệm
Cách này lp 9 á -.-
\(7x^2-5x+2=0\)
\(\Delta=\left(-5\right)^2-4.7.2=25-56< 0\)
Vậy phương trình vô nghiệm