Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=5-\left(x+1\right)^2\)
Do \(\left(x+1\right)^2\ge0\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{3\left(x+1\right)^2+4}\ge\sqrt{0+4}=2\\\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{0+9}=3\end{matrix}\right.\)
\(\Rightarrow VT\ge5\)
\(VP=5-\left(x+1\right)^2\le5\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)
a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x+1}=1+\sqrt{x-2}\)
\(\Leftrightarrow x+1=1+x-2+2\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{x-2}=1\)
\(\Leftrightarrow x=3\)
b/ ĐKXĐ: \(x^2\ge2\)
Đặt \(\sqrt{x^2-2}=t\ge0\Rightarrow x^2=t^2+2\)
Pt trở thành: \(t^2+2-t=4\)
\(\Leftrightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-2}=2\Leftrightarrow x^2=6\Rightarrow x=\pm\sqrt{6}\)
b) \(x^4+\sqrt{x^2+2014}=2014\)
\(\Leftrightarrow4x^4+4\sqrt{x^2+2014}=8056\)
\(\Leftrightarrow4x^4=8056-4\sqrt{x^2+2014}\)
\(\Leftrightarrow4x^4+4x^2+1=4x^2+8056-4\sqrt{x^2+2014}+1\)
\(\Leftrightarrow\left(2x^2+1\right)^2=\left(2\sqrt{x^2+2014}-1\right)^2\)
Đến đây quen thuộc rồi nhé !
Câu a) bạn tham khảo ở link này mình đã làm : https://olm.vn/hoi-dap/detail/12190742084.html
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
\(x=0\) không phải nghiệm, chia 2 vế cho \(x^4\)
\(\Leftrightarrow5-\frac{2}{x^2}-3\sqrt{\frac{1}{x^2}+\frac{2}{x^4}}=\frac{4}{x^4}\)
\(\Leftrightarrow2\left(\frac{2}{x^4}+\frac{1}{x^2}\right)+3\sqrt{\frac{2}{x^4}+\frac{1}{x^2}}-5=0\)
Đặt \(\sqrt{\frac{2}{x^4}+\frac{1}{x^2}}=a>0\)
\(\Rightarrow2a^2+3a-5=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{5}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\frac{2}{x^4}+\frac{1}{x^2}=1\Leftrightarrow x^4-x^2-2=0\Rightarrow x=\pm\sqrt{2}\)