K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 10 2020

\(\Leftrightarrow1-cosx-5cosx+2cos^2x-1=0\)

\(\Leftrightarrow2cos^2x-6cosx=0\)

\(\Leftrightarrow cosx\left(cosx-3\right)=0\)

\(\Leftrightarrow cosx=0\)

\(\Leftrightarrow...\)

25 tháng 10 2018

3cos2x - 5 cos⁡ x + 2 = 0

Đặt cos⁡ x = t với điều kiện -1 ≤ t ≤ 1 (*),

ta được phương trình bậc hai theo t:

3t2 - 5t + 2 = 0(1)

Δ = (-5)2 - 4.3.2 = 1

Phương trình (1)có hai nghiệm là: 

Giải bài tập Toán 11 | Giải Toán lớp 11

Ta có:

cos⁡x = 1 ⇔ cos⁡x = cos⁡0

⇔ x = k2π, k ∈ Z

cos⁡x = 2/3 ⇔ x = ± arccos⁡ 2/3 + k2π, k ∈ Z

29 tháng 8 2021

1.

Phương trình có nghiệm khi \(1+m\in\left[-1;1\right]\Rightarrow m\in\left[-2;0\right]\).

2.

Phương trình có nghiệm khi \(5+m^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow5+m^2\ge m^2+2m+1\)

\(\Leftrightarrow2m\le4\)

\(\Leftrightarrow m\le2\)

20 tháng 3 2017

Đáp án A

5 cos x+4 cos 2x +3 cos 4x =-12

5(1+cos x)+4(1+cos2x)+3(1+cos 4x) =0

5 tháng 3 2017

Chọn D

NV
15 tháng 7 2020

d/

\(\Leftrightarrow\frac{2}{\sqrt{29}}sinx-\frac{5}{\sqrt{29}}cosx=\frac{5}{\sqrt{29}}\)

Đặt \(cosa=\frac{2}{\sqrt{29}}\) với \(0< a< \pi\)

\(\Rightarrow sinx.cosa-cosx.sina=sina\)

\(\Leftrightarrow sin\left(x-a\right)=sina\)

\(\Rightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=\pi-a+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

NV
15 tháng 7 2020

c/

\(\Leftrightarrow\frac{\sqrt{3}}{\sqrt{19}}cosx+\frac{4}{\sqrt{19}}sinx=\frac{\sqrt{3}}{\sqrt{19}}\)

Đặt \(cosa=\frac{\sqrt{3}}{\sqrt{19}}\) với \(0< a< \pi\)

\(\Rightarrow cosx.cosa+sinx.sina=cosa\)

\(\Leftrightarrow cos\left(x-a\right)=cosa\)

\(\Rightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)

9 tháng 2 2017

Đáp án A

13 tháng 4 2017

Đáp án B