K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

20 tháng 12 2018

Lần sau đừng tự tiện xếp vào phần bất pt bạn nhé :(

Ta có : \(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)=3x^2\)

\(\Leftrightarrow4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)=3x^2\)

\(\Leftrightarrow4\left(x^2+17x+60\right)\left(x^2+16x+60\right)=3x^2\)(1)

Đặt \(x^2+16x+60=a\)

Pt (1) \(\Leftrightarrow4\left(a+x\right)a=3x^2\)

         \(\Leftrightarrow4\left(a^2+ax\right)=3x^2\)

          \(\Leftrightarrow4a^2+4ax=3x^2\)

          \(\Leftrightarrow4a^2+4ax+x^2=4x^2\)

         \(\Leftrightarrow\left(2a+x\right)^2=4x^2\)

          \(\Leftrightarrow\orbr{\begin{cases}2a+x=2x\\2a+x=-2x\end{cases}}\)

*Nếu \(2a+x=2x\)

\(\Leftrightarrow2a=x\)

\(\Leftrightarrow x^2+16x+60=x\)

\(\Leftrightarrow x^2+15x+60=0\)

\(\Leftrightarrow x^2+2.\frac{15}{2}.x+\frac{225}{4}+\frac{15}{4}=0\)

\(\Leftrightarrow\left(x+\frac{15}{2}\right)^2+\frac{15}{4}=0\)

Pt vô nghiệm

*Nếu \(2a+x=-2x\)

\(\Leftrightarrow2a+3x=0\)

\(\Leftrightarrow2\left(x^2-16x+60\right)+3x=0\)

\(\Leftrightarrow2x^2-32x+120+3x=0\)

\(\Leftrightarrow2x^2-29x+120=0\)

\(\Leftrightarrow x^2-\frac{29}{2}x+60=0\)

\(\Leftrightarrow x^2-2.\frac{29}{4}.x+\frac{841}{16}+\frac{119}{16}=0\)

\(\Leftrightarrow\left(x-\frac{29}{4}\right)^2+\frac{119}{16}=0\)

Pt vô nghiệm

Vậy pt vô nghiệm

9 tháng 5 2017

NHAN HAI CUM X(X+5) , (X+1)(X+4) TADC (X^2+5X)(X^2+X+4X+4)=12...(X^2+5X)(X^2+5X+4)=12.DAT T=X^2+5X(1)  TADC  T(T+4)-12=0       T^2+4T-12=0 GIAI RA KQUA VA THAY VAO(1) 

AH
Akai Haruma
Giáo viên
3 tháng 1 2020

Lời giải:
ĐKXĐ: \(x\geq -1\)

\(PT\Leftrightarrow \sqrt{(x+1)-4\sqrt{x+1}+4}+\sqrt{(x+1)-6\sqrt{x+1}+9}=1\)

\(\Leftrightarrow \sqrt{(\sqrt{x+1}-2)^2}+\sqrt{(\sqrt{x+1}-3)^2}=1\)

\(\Leftrightarrow |\sqrt{x+1}-2|+|3-\sqrt{x+1}|=1\)

Áp dụng BĐT dạng $|a|+|b|\ge |a+b|$ ta có:

$|\sqrt{x+1}-2|+|3-\sqrt{x+1}|\geq |\sqrt{x+1}-2+3-\sqrt{x+1}|=1$

Dấu "=" xảy ra khi $(\sqrt{x+1}-2)(3-\sqrt{x+1})\geq 0$

$\Leftrightarrow 2\leq \sqrt{x+1}\leq 3$

$\Leftrightarrow 3\leq x\leq 8$

Vậy.........

AH
Akai Haruma
Giáo viên
23 tháng 12 2019

Lời giải:
ĐKXĐ: \(x\geq -1\)

\(PT\Leftrightarrow \sqrt{(x+1)-4\sqrt{x+1}+4}+\sqrt{(x+1)-6\sqrt{x+1}+9}=1\)

\(\Leftrightarrow \sqrt{(\sqrt{x+1}-2)^2}+\sqrt{(\sqrt{x+1}-3)^2}=1\)

\(\Leftrightarrow |\sqrt{x+1}-2|+|3-\sqrt{x+1}|=1\)

Áp dụng BĐT dạng $|a|+|b|\ge |a+b|$ ta có:

$|\sqrt{x+1}-2|+|3-\sqrt{x+1}|\geq |\sqrt{x+1}-2+3-\sqrt{x+1}|=1$

Dấu "=" xảy ra khi $(\sqrt{x+1}-2)(3-\sqrt{x+1})\geq 0$

$\Leftrightarrow 2\leq \sqrt{x+1}\leq 3$

$\Leftrightarrow 3\leq x\leq 8$

Vậy.........

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Bài 1:
$2x^4-3x^2-5=0$

$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$

$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$

$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)

$\Leftrightarrow x^2=\frac{5}{2}$

$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Bài 2:

a. Khi $m=1$ thì pt trở thành:

$x^2-6x+5=0$

$\Leftrightarrow (x^2-x)-(5x-5)=0$

$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$

$\Leftrightarrow x=1$ hoặc $x=5$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$

$\Leftrightarrow m^2+14m+1\geq 0(*)$

Áp dụng định lý Viet:

$x_1+x_2=m+5$
$x_1x_2=-m+6$

Khi đó:
$x_1^2x_2+x_1x_2^2=18$

$\Leftrightarrow x_1x_2(x_1+x_2)=18$

$\Leftrightarrow (m+5)(-m+6)=18$

$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$

$\Leftrightarrow (m+3)(m-4)=0$

$\Leftrightarrow m=-3$ hoặc $m=4$

Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.

 

13 tháng 10 2018

a/ \(x^6+4x^3+12=0\)

Đặt: \(x^3=t\), ta có:

\(t^2+4t+12=0\)

\(\Leftrightarrow\left(t^2+4t+4\right)+8=0\)

\(\Leftrightarrow\left(t+2\right)^2=-8\left(voli\right)\)

=> K có t nào thỏa mãn

=> pt vô nghiệm

b/ \(x^{10}-10x^5+31=0\)

Đặt: \(x^5=t\), ta có:

\(t^2-5t+31=0\)

\(\Leftrightarrow\left(t^2-2\cdot t\cdot\dfrac{5}{2}+\dfrac{25}{4}\right)+\dfrac{99}{4}=0\)

\(\Leftrightarrow\left(t-\dfrac{5}{2}\right)^2=-\dfrac{99}{4}\left(voli\right)\)

=> K tìm đc t t/m

Vậy pt vô nghiệm

13 tháng 10 2018

a) \(x^6+4x^3+12=0\)

\(\Leftrightarrow\left(x^3\right)^2+2\cdot x^3\cdot2+4-4+12=0\)

\(\Leftrightarrow\left(x^3+2\right)^2+8=0\left(vôly1\right)\)

b) \(x^{10}-10x^5+31=0\)

\(\Leftrightarrow\left(x^5\right)^2-2\cdot x^5\cdot5+25-25+31=0\)

\(\Leftrightarrow\left(x^5-5\right)^2+6=0\left(vôly1\right)\)

2 tháng 7 2017

a)  3 x 2 − 7 x − 10 ⋅ 2 x 2 + ( 1 − 5 ) x + 5 − 3 = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1):

3 x 2   –   7 x   –   10   =   0

Có a = 3; b = -7; c = -10

⇒ a – b + c = 0

⇒ (1) có hai nghiệm  x 1   =   - 1   v à   x 2   =   - c / a   =   10 / 3 .

+ Giải (2):

2 x 2   +   ( 1   -   √ 5 ) x   +   √ 5   -   3   =   0

Có a = 2; b = 1 - √5; c = √5 - 3

⇒ a + b + c = 0

⇒ (2) có hai nghiệm:

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 3 + 3 x 2 - 2 x - 6 = 0 ⇔ x 3 + 3 x 2 - ( 2 x + 6 ) = 0 ⇔ x 2 ( x + 3 ) - 2 ( x + 3 ) = 0 ⇔ x 2 - 2 ( x + 3 ) = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): x 2   –   2   =   0   ⇔   x 2   =   2  ⇔ x = √2 hoặc x = -√2.

+ Giải (2): x + 3 = 0 ⇔ x = -3.

Vậy phương trình có tập nghiệm S = {-3; -√2; √2}

c)

x 2 − 1 ( 0 , 6 x + 1 ) = 0 , 6 x 2 + x ⇔ x 2 − 1 ( 0 , 6 x + 1 ) = x ⋅ ( 0 , 6 x + 1 ) ⇔ x 2 − 1 ( 0 , 6 x + 1 ) − x ( 0 , 6 x + 1 ) = 0 ⇔ ( 0 , 6 x + 1 ) x 2 − 1 − x = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): 0,6x + 1 = 0 ⇔ Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2):

x 2   –   x   –   1   =   0

Có a = 1; b = -1; c = -1

⇒   Δ   =   ( - 1 ) 2   –   4 . 1 . ( - 1 )   =   5   >   0

⇒ (2) có hai nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

d)

x 2 + 2 x − 5 2 = x 2 − x + 5 2 ⇔ x 2 + 2 x − 5 2 − x 2 − x + 5 2 = 0 ⇔ x 2 + 2 x − 5 − x 2 − x + 5 ⋅ x 2 + 2 x − 5 + x 2 − x + 5 = 0 ⇔ ( 3 x − 10 ) 2 x 2 + x = 0

⇔ (3x-10).x.(2x+1)=0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): 3x – 10 = 0 ⇔ Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2):

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

26 tháng 10 2014

Xét x=0 ==> loại

Xét x\(\ne\)0,ta chia cả 2 vế cho x2 thu được: 

4(x2+17x+60)(x2+16x+60)=3x2

4(x+\(\frac{60}{x}\)+17)(x+\(\frac{60}{x}\)+16)=3

Đặt x+\(\frac{60}{x}\)+16=t,ta được

4(t+1).t=3 <=> 4t2+4t-3=0 <=> t=\(\frac{1}{2}\)hoặc t=\(\frac{-3}{2}\)

Với t=1/2,ta có x+\(\frac{60}{x}\)+16=1/2 <=> x=-15/2 hoặc x=-8

Với t=-3/2,ta có x+\(\frac{60}{x}\)+16=-3/2 <=> ... bạn tự giải nốt nhé.