\(3\sqrt{x^3+8}=2x^2-3x+10\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

\(a,\sqrt{3-x}+\sqrt{2-x}=1\)

\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)

\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)

\(\Rightarrow2x+2\sqrt{2-x}=0\)

\(\Rightarrow x+\sqrt{2-x}=0\)

\(\Rightarrow2-x=\left(-x\right)^2\)

\(\Rightarrow2-x=x^2\)

\(\Rightarrow2-x^2-x=0\)

\(\Rightarrow x^2+x-2=0\) 

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

Vậy....

5 tháng 8 2018

\(a,\sqrt{2x+5}=\sqrt{1-x}\)

\(\Rightarrow2x+5=1-x\)

\(2x+x=1-5\)

\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)

Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên

26 tháng 7 2015

a/ \(x^2+4x+5=2\sqrt{2x+3}\)

ĐK: \(x\ge-\frac{3}{2}\)

Cách 1:

Đặt \(\sqrt{2x+3}=y+2\text{ (}y\ge-2\text{)}\Rightarrow\left(y+2\right)^2=2x+3\text{ (1)}\)

Pt đã cho trở thành \(\left(x+2\right)^2+1=2\left(y+2\right)\Leftrightarrow\left(x+2\right)^2=2y+3\text{ (2)}\)

\(\left(2\right)-\left(1\right)\Rightarrow\left(x+2\right)^2-\left(y+2\right)^2=2\left(y-x\right)\Leftrightarrow\left(x-y\right)\left(x+y+6\right)=0\)

\(\Leftrightarrow x=y\text{ }\left(\text{do }x\ge-\frac{3}{2};\text{ }y\ge-2\text{ nên }x+y+6\ge-\frac{3}{2}-2+6>0\right)\)

Do đó, phương trình đã cho tương tương:

\(x=\sqrt{2x+3}-2\Leftrightarrow x+2=\sqrt{2x+3}\Leftrightarrow\left(x+2\right)^2=2x+3\)

\(\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Kết luận: \(x=-1.\)

Cách 2:

\(pt\Leftrightarrow\frac{1}{4}\left(2x+3\right)^2+\frac{1}{2}\left(2x+3\right)+\frac{5}{4}=2\sqrt{2x+3}\)

Đặt \(t=\sqrt{2x+3};\text{ }t\ge0\)

pt thành \(\frac{1}{4}t^4+\frac{1}{2}t^3+\frac{5}{4}=2t\Leftrightarrow\left(t-1\right)^2\left(t^2+2t+5\right)=0\)

\(\Leftrightarrow t-1=0\text{ }\left(\text{do }t^2+2t+5=\left(t+1\right)^2+4>0\right)\)

\(\Leftrightarrow t=1\)

Do đó, phương trình đã cho tương đương:

\(\sqrt{2x+3}=1\Leftrightarrow x=-1\)

Kết luận: \(x=-1.\)

Cách 3:

\(pt\Leftrightarrow\left(x^2+2x+1\right)+\left[\left(2x+3\right)-2\sqrt{2x+3}+1\right]=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow x+1=0\text{ và }\sqrt{2x+3}-1=0\)

\(\Leftrightarrow x=-1\)

Kết luận: \(x=-1.\)

 

b/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)

ĐK: \(x\ge-2\)

\(pt\Leftrightarrow2\left(x^2-2x+4\right)-2\left(x+2\right)=3\sqrt{x+2}.\sqrt{x^2-2x+4}\)

Đặt \(a=\sqrt{x^2-2x+4};\text{ }b=\sqrt{x+2}\left(a>0;\text{ }b\ge0\right)\)

Pt thành: \(2a^2-2b^2=3ab\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)

\(\Leftrightarrow a=2b\text{ }\left(\text{do }a>0;\text{ }b\ge0\text{ nên }2a+b>0\right)\)

Pt đã cho tương đương: \(\sqrt{x^2-2x+4}=2\sqrt{x+2}\Leftrightarrow x^2-2x+4=4\left(x+2\right)\)

\(\Leftrightarrow x^2-6x-4=0\Leftrightarrow x=3+\sqrt{13}\text{ hoặc }x=3-\sqrt{13}\)

Kết luận: \(x=3+\sqrt{13};\text{ }x=3-\sqrt{13}\)

23 tháng 12 2015

ĐKXĐ x \(\ge\)0

ta có pt <=> \(2\left(x^2+2\right)-2x=3\sqrt{x\left(x^2+2\right)}\)

Đặt \(\sqrt{x}=a;\sqrt{x^2+2}=b\) ta đc

\(2b^2-2a^2=3ab\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)

Th1: a=2b

TH2: a= \(\frac{-1}{2}b\) đến đây bạn tự giải

23 tháng 12 2015

xạo quần hả m , cái này t mới sáng tác ra đó 

27 tháng 9 2015

\(\text{ĐKXĐ: }2x+3\ge0\Leftrightarrow x\ge\frac{-3}{2}\)

\(\sqrt{2x+3}+x=x^2-3\)

\(\Leftrightarrow2x+3+\sqrt{2x+3}+\frac{1}{4}-x-\frac{1}{4}=x^2\)

\(\Leftrightarrow2x+3+\sqrt{2x+3}+\frac{1}{4}=x^2+x+\frac{1}{4}\)

\(\Leftrightarrow\left(\sqrt{2x+3}+\frac{1}{2}\right)=\left(x+\frac{1}{2}\right)^2\)

\(\Leftrightarrow\sqrt{2x+3}+\frac{1}{2}=x+\frac{1}{2}\)

\(\Leftrightarrow\sqrt{2x+3}=x\)

\(\Leftrightarrow2x+3=x^2\)

tui nghĩ tới đây là you giải dc

27 tháng 9 2015

mình chắc chắn là Nguyễn Kim Kết ko bít làm đâu

23 tháng 11 2015

\(\Leftrightarrow4\left(x+1\right)+\sqrt{2\left(x+1\right)^2+\left(x^2+1\right)}-3\sqrt{x^2+1}=0\)

\(a=x+1;\text{ }b=\sqrt{x^2+1}\)

\(\Rightarrow4a-3b+\sqrt{2a^2+b^2}=0\Leftrightarrow3b-4a=\sqrt{2a^2+b^2}\)

\(\Rightarrow\left(3b-4a\right)^2=2a^2+b^2\Leftrightarrow7\left(\frac{a}{b}\right)^2-12\frac{a}{b}+4=0\)

\(\Leftrightarrow\frac{a}{b}=\frac{6\pm2\sqrt{2}}{7}\)

Khá xấu nhưng vẫn giải được nhé. Bạn kiểm tra lại ở trên rồi tính toán nốt.

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )