Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vào câu hỏi tương tự nhé bạn, với lại mình chưa học lớp 9
\(1\text{) }a=\sqrt{2x^2-4x+3}\Rightarrow x^2-2x=\frac{a^2-3}{2}\)
Pt trở thành \(\frac{a^2-3}{2}+3=2a\)
\(3\text{) }pt\Leftrightarrow2\left(x^2-2x+4\right)+\left(x+2\right)=3\sqrt{x+2}\sqrt{x^2-2x+4}\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x+4}+\sqrt{x+2}\right)\left(\sqrt{x^2-2x+1}-\sqrt{x+2}\right)=0\)
b: \(\Leftrightarrow\left(x^2+5x+4\right)=5\sqrt{x^2+5x+28}\)
Đặt \(x^2+5x+4=a\)
Theo đề, ta có \(5\sqrt{a+24}=a\)
=>25a+600=a2
=>a=40 hoặc a=-15
=>x2+5x-36=0
=>(x+9)(x-4)=0
=>x=4 hoặc x=-9
c: \(\Leftrightarrow x^2+5x=2\sqrt[3]{x^2+5x-2}-2\)
Đặt \(x^2+5x=a\)
Theo đề, ta có: \(a=2\sqrt[3]{a}-2\)
\(\Leftrightarrow\sqrt[3]{8a}=a+2\)
=>(a+2)3=8a
=>\(a^3+6a^2+12a+8-8a=0\)
\(\Leftrightarrow a^3+6a^2+4a+8=0\)
Đến đây thì bạn chỉ cần bấm máy là xong
Đk: \(x\ge-1\)
pt<=> \(3\left(x^2+2x+2\right)=10\sqrt{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}\)
\(3\left(x^2+2x+2\right)=10\sqrt{\left(x+1\right)\left(x^2-x+2x+1\right)}\)
<=> \(3\left(x^2+2x+1\right)=10\sqrt{\left(x+1\right)\left(x^2+x+1\right)}\)
Đặt \(\sqrt{x+1}=a\left(a\ge0\right)\),\(\sqrt{x^2+x+1}=b\)
=> \(a^2+b^2=x+1+x^2+x+1=x^2+2x+2\)
Có \(3\left(a^2+b^2\right)=10ab\)
<=>\(3a^2-10ab+3b^2=0\)
<=> \(3a^2-ab-9ab+3b^2=0\)
<=> \(a\left(3a-b\right)-3b\left(3a-b\right)=0\)
<=> \(\left(a-3b\right)\left(3a-b\right)=0\) <=> \(\left[{}\begin{matrix}a=3b\\3a=b\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}\sqrt{x+1}=3\sqrt{x^2+x+1}\\3\sqrt{x+1}=\sqrt{x^2+x+1}\end{matrix}\right.\)
Giải nốt :))