Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)
Đặt \(\sqrt[3]{x^2+5x-2}=a\)
\(a^3-2a+4=0\)
\(\Leftrightarrow\left(a+2\right)\left(a^2-2a+2\right)=0\Rightarrow a=-2\)
\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\Rightarrow x^2+5x+6=0\Rightarrow...\)
b/ ĐKXĐ:...
\(\Leftrightarrow-3\left(-x^2+4x+10\right)-5\sqrt{-x^2+4x+10}+42=0\)
Đặt \(\sqrt{-x^2+4x+10}=a\ge0\)
\(-3a^2-5a+42=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{14}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+4x+10}=3\Rightarrow x^2-4x-1=0\Rightarrow...\)
c/ ĐKXĐ: ...
\(\Leftrightarrow x^2+3x+3\sqrt{x^2+3x}-10=0\)
Đặt \(\sqrt{x^2+3x}=a\ge0\)
\(a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+3x}=2\Rightarrow x^2+3x-4=0\)
d/ ĐKXĐ: \(-1\le x\le2\)
\(\Leftrightarrow\sqrt{3-x+x^2}=1+\sqrt{2+x-x^2}\)
\(\Leftrightarrow3-x+x^2=3+x-x^2+2\sqrt{2+x-x^2}\)
\(\Leftrightarrow2+x-x^2+\sqrt{2+x-x^2}-2=0\)
Đặt \(\sqrt{2+x-x^2}=a\ge0\)
\(a^2+a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2+x-x^2}=1\Leftrightarrow x^2-x-1=0\)
e/ \(\Leftrightarrow\sqrt{x^2-3x+3}-1+\sqrt{x^2-3x+6}-2=0\)
\(\Leftrightarrow\frac{x^2-3x+2}{\sqrt{x^2-3x+3}+1}+\frac{x^2-3x+2}{\sqrt{x^2-3x+6}+2}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{\sqrt{x^2-3x+3}+1}+\frac{1}{\sqrt{x^2-3x+6}+2}\right)=0\)
\(\Leftrightarrow x^2-3x+2=0\)
a/ ĐKXĐ: \(x^2+3x+2\ge0\)
\(\Leftrightarrow3-2\sqrt{x^2+3x+2}=1-2\sqrt{x^2-x+1}\)
\(\Leftrightarrow\sqrt{x^2+3x+2}=\sqrt{x^2-x+1}+1\)
\(\Leftrightarrow x^2+3x+2=x^2-x+1+1+2\sqrt{x^2-x+1}\)
\(\Leftrightarrow2x=\sqrt{x^2-x+1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2=x^2-x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3x^2+x-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-1+\sqrt{13}}{6}\\x=\frac{-1-\sqrt{13}}{6}\left(l\right)\end{matrix}\right.\)
b/ ĐKXĐ: \(3x^2-7x+2\ge0\)
\(\Leftrightarrow\sqrt{3x^2-5x+7}=3-\sqrt{3x^2-7x+2}\) (1)
\(\Rightarrow3x^2-5x+7=9+3x^2-7x+2-6\sqrt{3x^2-7x+2}\)
\(\Rightarrow2-x=3\sqrt{3x^2-7x+2}\) (\(x\le2\))
\(\Rightarrow\left(2-x\right)^2=9\left(3x^2-7x+2\right)\)
\(\Rightarrow x^2-4x+4=27x^2-63x+18\)
\(\Rightarrow26x^2-59x+14=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{26}\end{matrix}\right.\)
Do bước biến đổi thứ 2 ko phải phép tương đương nên cần thay 2 nghiệm vào (1) để kiểm tra lại, bạn tự thay nhé
\(1+\sqrt{x^2-4x+3}-x=0\)
\(ĐK:\left\{{}\begin{matrix}\sqrt{x^2-4x+3\ge0}\\x-1\ge0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x\ge3\end{matrix}\right.\)
\(PT\Leftrightarrow\sqrt{x^2-4x+3}-\left(x-1\right)=0\)
\(\Leftrightarrow\frac{x^2-4x+3-\left(x-1\right)^2}{\sqrt{x^2-4x+3}+\left(x-1\right)}=0\)
\(\Leftrightarrow2-2x=0\Rightarrow x=1\left(tm\right)\)
a/ ĐKXĐ: \(0\le x\le4\)
\(\left(x^2-4x\right)\sqrt{-x^2+4x}+x^2-4x+2=0\)
Đặt \(\sqrt{-x^2+4x}=a\ge0\)
\(-a^2.a-a^2+2=0\)
\(\Leftrightarrow a^3+a^2-2=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+2a+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a^2+2a+2=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-x^2+4x}=1\Leftrightarrow x^2-4x+1=0\Rightarrow...\)
b/ \(x^4+2x^2+x\sqrt{2x^2+4}-4=0\)
Đặt \(x\sqrt{2x^2+4}=a\Rightarrow x^2\left(2x^2+4\right)=a^2\Rightarrow x^4+2x^2=\frac{a^2}{2}\)
\(\frac{a^2}{2}+a-4=0\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=2\left(x>0\right)\\x\sqrt{2x^2+4}=-4\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^4+4x^2=4\\2x^4+4x^2=16\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=\sqrt{3}-1\\x^2=-\sqrt{3}-1\left(l\right)\\x^2=2\\x^2=-4\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)
c/ Đặt \(\sqrt[3]{2x^2+3x-10}=a\Rightarrow2x^2+3x=a^3+10\)
\(a^3+10-14=2a\)
\(\Leftrightarrow a^3-2a-4=0\)
\(\Leftrightarrow\left(a-2\right)\left(a^2+2a+2\right)=0\Rightarrow a=2\)
\(\Rightarrow\sqrt[3]{2x^2+3x-10}=2\Rightarrow2x^2+3x-18=0\Rightarrow...\)
d/ \(\Leftrightarrow2\left(3x^2+x+4\right)+\sqrt[3]{3x^2+x+4}-18=0\)
Đặt \(\sqrt[3]{3x^2+x+4}=a\)
\(2a^3+a-18=0\)
\(\Leftrightarrow\left(a-2\right)\left(2a^2+4a+9\right)=0\Rightarrow a=2\)
\(\Rightarrow\sqrt[3]{3x^2+x+4}=2\Rightarrow3x^2+x-4=0\Rightarrow...\)
e/ \(\Leftrightarrow x^2+5x+2-3\sqrt{x^2+5x+2}-2=0\)
Đặt \(\sqrt{x^2+5x+2}=a\ge0\)
\(a^2-3a-2=0\Rightarrow\left[{}\begin{matrix}a=\frac{3+\sqrt{17}}{2}\\a=\frac{3-\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+5x+2}=\frac{3+\sqrt{17}}{2}\Rightarrow x^2+5x-\frac{9+3\sqrt{17}}{2}=0\)
Bài cuối xấu quá, chắc nhầm số liệu
\(x^2-3x-\sqrt{x^2-3x+4}+2=0\) ĐK : \(x^2-3x+4\ge0\)
\(\Leftrightarrow x^2-3x+2=\sqrt{x^2-3x+4}\)
\(\Leftrightarrow x^2-3x+4-2=\sqrt{x^2-3x+4}\)
Đặt : \(\sqrt{x^2-3x+4}=t\) \(\left(t\ge0\right)\)
\(pt\Leftrightarrow t^2-2=t\)
\(\Leftrightarrow t^2-t-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(tm\right)\\t=-1\left(l\right)\end{matrix}\right.\)
Với \(t=2\Rightarrow\sqrt{x^2-3x+4}=2\)
\(\Leftrightarrow x^2-3x+4=4\)
\(\Leftrightarrow x^2-3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Ta có: \(x^2-3x-\sqrt{x^2-3x+4}+2=0\)
\(x^2-3x+4-\sqrt{x^2-3x+4}-2=0\)
Đặt \(t=\sqrt{x^2-3x+4}\left(t\ge0\right)\)
Ta có: \(t^2-t-2=0\)
\(1+\left(-2\right)-\left(-1\right)=0\)
\(\Rightarrow\)pt có 2 nghiệm.
\(\left[{}\begin{matrix}t_1=-1\left(loại\right)\\t_2=2\left(nhận\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-3x+4}=2\)
\(\Leftrightarrow x^2-3x+4=4\)
\(\Leftrightarrow x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy nghiệm của pt là \(\left\{0;3\right\}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
\(3-x+\sqrt{x^2-3x+2}=0\)
\(\Leftrightarrow\sqrt{x^2-3x+2}=x-3\)
\(ĐKXĐ:x^2-3x+2\ge0\)
\(\Leftrightarrow\left(x-2\right).\left(x-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\ge1\end{matrix}\right.\)
\(pt\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\x^2-3x+2=\left(x-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x^2-3x+2=x^2-6x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x=\dfrac{7}{3}\left(tm\right)\end{matrix}\right.\)
Vậy x = \(\dfrac{7}{3}\)
\(3-x+\sqrt{x^2-3x+2}=0\)
\(pt\Leftrightarrow\dfrac{7}{3}-x+\sqrt{x^2-3x+2}-\dfrac{2}{3}=0\)
\(\Leftrightarrow\dfrac{7}{3}-x+\dfrac{x^2-3x+2-\dfrac{4}{9}}{\sqrt{x^2-3x+2}+\dfrac{2}{3}}=0\)
\(\Leftrightarrow-\left(x-\dfrac{7}{3}\right)+\dfrac{\left(x-\dfrac{7}{3}\right)\left(x-\dfrac{2}{3}\right)}{\sqrt{x^2-3x+2}+\dfrac{2}{3}}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{3}\right)\left(-1+\dfrac{x-\dfrac{2}{3}}{\sqrt{x^2-3x+2}+\dfrac{2}{3}}\right)=0\)
Dễ thấy: \(-1+\dfrac{x-\dfrac{2}{3}}{\sqrt{x^2-3x+2}+\dfrac{2}{3}}>0\forall\left[{}\begin{matrix}x\ge1\\x\ge2\end{matrix}\right.\)
\(\Rightarrow x-\dfrac{7}{3}=0\Rightarrow x=\dfrac{7}{3}\)