K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

\(\left(2x^2+3x+1\right)\left(2x^2+5x+3\right)=18\)

\(\Leftrightarrow\left(2x^2+2x+x+1\right)\left(2x^2+2x+3x+3\right)=18\)

\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)\left(x+1\right)\left(2x+3\right)=18\)

\(\Leftrightarrow\left(x+1\right)^2\left(2x+1\right)\left(2x+3\right)=18\)

\(\Leftrightarrow\left(x^2+2x+1\right)\left(4x^2+8x+3\right)=18\)

\(\Leftrightarrow4\left(x^2+2x+1\right)\left(4x^2+8x+3\right)=72\)

\(\Leftrightarrow\left(4x^2+8x+4\right)\left(4x^2+8x+3\right)-72=0\)

\(\Leftrightarrow\left(4x^2+8x+3\right)^2+\left(4x^2+8x+3\right)-72=0\)

\(\Leftrightarrow\left(4x^2+8x+3\right)^2+9\left(4x^2+8x+3\right)-8\left(4x^2+8x+3\right)-72=0\)

\(\Leftrightarrow\left(4x^2+8x+3\right)\left(4x^2+8x+3+9\right)-8\left(4x^2+8x+3+9\right)=0\)

\(\Leftrightarrow\left(4x^2+8x+12\right)\left(4x^2+8x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x^2+8x+12=0\left(1\right)\\4x^2+8x-5=0\left(2\right)\end{cases}}\)

+) Pt (1) \(\Leftrightarrow\left(x+1\right)^2+2=0\) ( vô lí do \(\left(x+1\right)^2+2\ge2>0\forall x\) )

+) Pt (2) \(\Leftrightarrow4\left(x+1\right)^2=9\)

\(\Leftrightarrow\left(x+1\right)^2=\frac{9}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{3}{2}\\x+1=-\frac{3}{2}\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}\) ( thỏa mãn )

Vậy phương trình đã cho có tập nghiệm \(S=\left\{\frac{1}{2},-\frac{5}{2}\right\}\)

19 tháng 2 2020

a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)

⇔ 5x + 3 = 2x + 3

⇔ 3x = 0

⇔ x = 0

Vậy phương trình có nghiệm là x = 0

Mình làm lại rồi nhé!

19 tháng 2 2020

a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)

⇔ 5x + 3 = 2x + 3

⇔ 3x = 0

⇔ x = 0

Vậy phương trình có nghiệm là x = 3.

26 tháng 5 2016

a)    (2x + 1)(3x - 2) = (5x - 8)(2x + 1)

 <=> 6x2 - x - 2 = 10x2 - 11x - 8

<=>  6x2 - 10x2 - x + 11x -2 + 8 = 0

<=>  -4x2 + 10x + 6  = 0

<=> -2 (2x2 - 5x - 3) = 0

<=> 2x2 - 5x - 3 = 0 

<=> 2x2 - 6x + x - 3 = 0

<=> x (2x + 1) - 3 (2x + 1) = 0

<=> (x - 3) (2x + 1) = 0

* x - 3 = 0  => x = 3

* 2x + 1 = 0 => x = -1/2 

S = {-1/2; 3}

b) 4x2 – 1 = (2x +1)(3x -5)

<=> 4x2 – 1 - (2x +1)(3x -5) = 0

<=> (2x - 1) (2x + 1) - (2x + 1)(3x - 5) = 0

<=>  (2x + 1) (2x - 1 - 3x + 5) = 0

<=>  (2x + 1) (-x + 4) = 0

* 2x + 1 = 0  <=> x = -1/2

* -x + 4 = 0 <=> x = 4

S = {-1/2; 4}

c) (x + 1)2 = 4(x2 – 2x + 1)

<=> (x + 1)2 - 4(x2 – 2x + 1) = 0

<=> (x + 1)2 - 4(x2 – 1)2 = 0

* (x + 1)2 = 0   <=> x = -1

* 4(x2 - 1)2 = 0  <=> x = 1 và x = -1

S = {-1;  1}

d) 2x3 + 5x2 – 3x = 0

<=> x (2x2 + 5x - 3) = 0

<=> x (2x2 + 6x - x - 3) = 0

<=> x [x(2x - 1) + 3 (2x - 1)] = 0

<=> x (2x - 1) (x + 3) = 0

* x = 0

* 2x - 1 = 0  <=> x = 1/2

* x + 3 = 0  <=> x = -3

S = { -3; 0; 1/2}

Đặt \(x^2+3x-4=a;2x^2-5x+3=b\)

Ta có phương trình: \(a^3+b^3=\left(a+b\right)^3\)

=>3ab(a+b)=0

\(\Leftrightarrow\left(x^2+3x-4\right)\left(2x^2-5x+3\right)\left(3x^2-2x-1\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left(x-1\right)\left(2x-3\right)\left(x-1\right)\left(3x+1\right)=0\)

hay \(x\in\left\{-4;1;\dfrac{3}{2};-\dfrac{1}{3}\right\}\)

5 tháng 3 2018

a) \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy .................

b) \(\left(x-3\right)^2=\left(2x+1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+3\right)\left(2x+1+x-3\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy ...............

c) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

P/s: tới đây bn tự giải tiếp nha

2 tháng 9 2020

Lời giải :

Đặt \(\hept{\begin{cases}x^2+3x-4=a\\2x^2-5x+3=b\end{cases}}\)

\(\Rightarrow a+b=\left(x^2+3x-4\right)+\left(2x^2-5x+3\right)=3x^2-2x-1\)

Khi đó phương trình đã cho trở thành :

\(a^3+b^3=\left(a+b\right)^3\)

\(\Leftrightarrow a^3+b^3=a^3+b^3+3ab.\left(a+b\right)\)

\(\Leftrightarrow3ab.\left(a+b\right)=0\) \(\Rightarrow\orbr{\begin{cases}a+b=0\\ab=0\end{cases}}\)

+) Với \(a+b=0\Rightarrow3x^2-2x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)

+) Với \(ab=0\Rightarrow\left(x^2+3x-4\right).\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+3x-4=0\left(1\right)\\2x^2-5x+3=0\left(2\right)\end{cases}}\)

Pt (1) \(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)

Pt (2) \(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{2}\end{cases}}\)

Vạy phương trình đã cho có tập nghiệm \(S=\left\{-4,-\frac{1}{3},1,\frac{3}{2}\right\}\)

1) Ta có: 3x-12=5x(x-4)

\(\Leftrightarrow3x-12-5x\left(x-4\right)=0\)

\(\Leftrightarrow3x-12-5x^2+20x=0\)

\(\Leftrightarrow-5x^2+23x-12=0\)

\(\Leftrightarrow-5x^2+20x+3x-12=0\)

\(\Leftrightarrow\left(-5x^2+20x\right)+\left(3x-12\right)=0\)

\(\Leftrightarrow5x\left(-x+4\right)+3\left(x-4\right)=0\)

\(\Leftrightarrow5x\left(4-x\right)-3\left(4-x\right)=0\)

\(\Leftrightarrow\left(4-x\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{3}{5}\end{matrix}\right.\)

Vậy: \(x\in\left\{4;\frac{3}{5}\right\}\)

2) Ta có: 3x-15=2x(x-5)

\(\Leftrightarrow3x-15-2x\left(x-5\right)=0\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{5;\frac{3}{2}\right\}\)

3) Ta có: 3x(2x-3)+2(2x-3)=0

\(\Leftrightarrow\left(2x-3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-2}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}\)

4) Ta có: (4x-6)(3-3x)=0

\(\Leftrightarrow\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{4}=\frac{3}{2}\\x=1\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};1\right\}\)

10 tháng 2 2020

4) (4x - 6 ) ( 3 - 3x ) = 0

<=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=1\end{matrix}\right.\)

a: Đặt x-3=a; x+1=b

Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

=>(x-3)(x+1)(2x-2)=0

hay \(x\in\left\{3;-1;1\right\}\)

b: \(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-15x^2-9x^2=0\)

\(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-24x^2=0\)

\(\Leftrightarrow\left(2x^2+1\right)^2+6x\left(2x^2+1\right)-4x\left(2x^2+1\right)-24x^2=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(2x^2+6x+1\right)-4x\left(2x^2+6x+1\right)=0\)

\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)

\(\Leftrightarrow x^2+3x+\dfrac{1}{2}=0\)

\(\Leftrightarrow x^2+3x+\dfrac{9}{4}=\dfrac{7}{4}\)

\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{7}{4}\)

hay \(x\in\left\{\dfrac{\sqrt{7}-3}{2};\dfrac{-\sqrt{7}-3}{2}\right\}\)

 

11 tháng 2 2020

\(2\left(x+1\right)=5x+7\\ \Leftrightarrow2x+2=5x+7\\\Leftrightarrow 2x-5x=-2+7\\\Leftrightarrow -3x=5\\ \Leftrightarrow x=-\frac{5}{3}\)

Vậy phương trình trên có nghiệm là \(-\frac{5}{3}\)

\(3x-1=x+3\\ \Leftrightarrow3x-x=1+3\\ \Leftrightarrow2x=4\\\Leftrightarrow x=2\)

Vậy phương trình trên có nghiệm là \(2\)

\(15-7x=9-3x\\\Leftrightarrow -7x+3x=-15+9\\\Leftrightarrow -4x=-6\\ \Leftrightarrow x=\frac{3}{2}\)

Vậy phương trình trên có nghiệm là \(\frac{3}{2}\)

\(2x+1=15x-5\\ \Leftrightarrow2x-15x=-1-5\\ \Leftrightarrow-13x=-6\\ \Leftrightarrow x=\frac{6}{13}\)

Vậy phương trình trên có nghiệm là \(\frac{6}{13}\)

\(3x-2=2x+5\\ \Leftrightarrow3x-2x=2+5\\ \Leftrightarrow x=7\)

Vậy phương trình trên có nghiệm là \(7\)