K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

từ hai phương trình ta suy ra :

\(2\left(2x^2-y^2\right)=xy+x^2\Leftrightarrow3x^2-xy-2y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x+2y\right)=0\)

Hệ pt đã cho tương đương : \(\hept{\begin{cases}2x^2-y^2=1\\\left(x-y\right)\left(3x+2y\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x^2-y^2=1\\\orbr{\begin{cases}x-y=0\\3x+2y=0\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x-y=0\\2x^2-y^2=1\end{cases}}\\\hept{\begin{cases}3x+2y=0\\2x^2-y^2=1\end{cases}}\end{cases}}}\)

giải rra ta được 2 nghiệm ( 1 ; 1 ) hoặc ( -1 ; - 1 )

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

1.

HPT  \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)

Vậy.............

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

2.

ĐKXĐ: $x\in\mathbb{R}$

$x^2+x-2\sqrt{x^2+x+1}+2=0$

$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$

$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$

$\Rightarrow \sqrt{x^2+x+1}=1$

$\Rightarrow x^2+x=0$

$\Leftrightarrow x(x+1)=0$

$\Rightarrow x=0$ hoặc $x=-1$

3 tháng 7 2023

a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)

NV
20 tháng 3 2019

Cộng vế với vế:

\(x^2+2xy+y^2+3x+3y-4=0\)

\(\Leftrightarrow\left(x+y\right)^2+3\left(x+y\right)-4=0\Rightarrow\left[{}\begin{matrix}x+y=1\\x+y=-4\end{matrix}\right.\)

TH1: \(x+y=1\Rightarrow y=1-x\) thay vào pt dưới:

\(x\left(1-x\right)+x+2\left(1-x\right)-1=0\)

\(\Leftrightarrow-x^2+1\Rightarrow\left[{}\begin{matrix}x=1;y=0\\x=-1;y=2\end{matrix}\right.\)

TH2: \(x+y=-4\Rightarrow y=-4-x\)

\(x\left(-4-x\right)+x+2\left(-4-x\right)-1=0\)

\(\Leftrightarrow x^2+5x+9=0\) (vô nghiệm)

NV
15 tháng 3 2022

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow3x^2-xy-2y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x+2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=-\dfrac{3}{2}x\end{matrix}\right.\)

Thế vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\dfrac{3}{2}\right)x^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=1\\-\dfrac{1}{4}x^2=1\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y=1\\x=y=-1\end{matrix}\right.\)

16 tháng 3 2016

lấy vế trên trừ dưới bạn có 2 kết quả 

thế từng kết quả vào là ra 

21 tháng 2 2020

Với y =0 thế vào hệ => vô lí

Với y khác 0

Cộng vế với vế hai phương trình của hệ ta có:

\(x^2y^2+xy^2=y+1\)

<=> \(\left(x^2y^2-1\right)+\left(xy^2-y\right)=0\)

<=> \(\left(xy-1\right)\left(xy+1+y\right)=0\)

TH1: \(xy-1=0\)

<=> \(x=\frac{1}{y}\)

Thế vào hệ ta có:

\(1=\frac{2}{y^2}+y\)

<=> \(y^3-y^2+2=0\)

<=> \(\left(y^3+1\right)-\left(y^2-1\right)=0\)

<=> \(\left(y+1\right)\left(y^2+2y+2\right)=0\)

<=> \(\orbr{\begin{cases}y=-1\\\left(y+1\right)^2+1=0\left(loai\right)\end{cases}}\)

Với y = -1 ta có: x = - 1

TH2: xy + 1 + y = 0

<=> \(x=\frac{-1-y}{y}\) thế vào hệ ta có:

\(\left(y+1\right)^2=\frac{2\left(1+y\right)^2}{y^2}+y\)

<=> \(y^4+y^3-y^2-4y-2=0\)

<=> \(\left(y^4-y^3-y^2\right)+\left(2y^3-2y^2-2y\right)+\left(2y^2-2y-2\right)=0\)

<=> \(\left(y^2-y-1\right)\left(y^2+2y+2\right)=0\)

<=> \(\orbr{\begin{cases}y=\frac{1\pm\sqrt{5}}{2}\\\left(y+1\right)^2+1=0\left(loại\right)\end{cases}}\)

Với \(y=\frac{1-\sqrt{5}}{2}\) ta có: \(x=\frac{-1+\sqrt{5}}{2}\)

Với \(y=\frac{1+\sqrt{5}}{2}\) ta có: \(x=\frac{-1-\sqrt{5}}{2}\)

Kết luận: Hệ có 3 nghiệm:...

17 tháng 10 2020

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

17 tháng 10 2020

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

19 tháng 7 2019

Em thử ha!

PT \(\Leftrightarrow x^2+\left(1-y\right)x+\left(y+1-2y^2\right)=0\)

Để pt có nghiệm thì \(\Delta=\left(1-y\right)^2-4\left(-2y^2+y+1\right)\ge0\)

\(\Leftrightarrow9y^2-6y-3\ge0\). Để pt có nghiệm nguyên thì \(\Delta=9y^2-6y-3=k^2\left(k\in\mathbb{N}\right)\)

\(\Leftrightarrow\left(3y-1\right)^2-k^2=4\Leftrightarrow\left(3y-1-k\right)\left(3y-1+k\right)=4\)

Với mọi k thuộc N thì \(3y-1+k-\left(3y-1-k\right)=2k\ge0\)

Nên \(3y-1+k\ge3y-1-k\)

Do vậy ta xét các trường hợp:

TH1:\(\left\{{}\begin{matrix}3y-1+k=2\\3y-1-k=2\end{matrix}\right.\Leftrightarrow6y-2=4\Leftrightarrow y=1\). Thay vào pt ban đầu tìm x

TH2: \(\left\{{}\begin{matrix}3y-1+k=-2\\3y-1-k=-2\end{matrix}\right.\Leftrightarrow y=-\frac{1}{3}\). Thay vào tìm x

TH3: \(\left\{{}\begin{matrix}3y-1+k=4\\3y-1-k=1\end{matrix}\right.\Leftrightarrow y=\frac{7}{6}\). Thay vào tìm x

TH4: \(\left\{{}\begin{matrix}3y-1+k=-1\\3y-1-k=-4\end{matrix}\right.\Leftrightarrow y=-\frac{1}{2}\). Thay vào tìm x

Hết các trường hợp chưa ta??:3