Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2-11x-26=0\)
nên a=1; b=-11; c=-26
Áp dụng hệ thức Viet, ta được:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)
và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)
a, \(x^4-4x^3-6x^2-4x+1=0\)(*)
<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)
<=> \(\left(x^2-2x+1\right)^2=12x^2\)
<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)
Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)
<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)
=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)
<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)
<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm
Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
chủ yếu là hỏi câu c hả? tớ làm mỗi đoạn đưa về tổng - tích thôi, bạn giải thấy khó chỗ nào thì hỏi cụ thể nhe ^^
\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=x_1x_2+2x_2^2+2x_1^2+4x_1x_2=2\left(x_1+x_2\right)^2-4x_1x_2+5x_1x_2\)
đến đây Vi-ét đc òi
Gotcha Tokoyami
Có \(\Delta=\left(m-2\right)^2-4\left(-m^2+3m-4\right)\)
\(=m^2-4m+4+4m^2-12m+16\)
\(=5m^2-16m+20\)
\(=5\left(m^2-\frac{16}{5}m+4\right)\)
\(=5\left[\left(m^2-2.\frac{8}{5}m+\frac{64}{25}\right)+\frac{36}{25}\right]\)
\(=5\left[\left(m-\frac{8}{5}\right)^2+\frac{36}{25}\right]>0\forall m\)
Nên pt có 2 nghiệm phân biệt với mọi m
a, Với m = 0 thì pt trở thành
\(x^2+2x-4=0\)
Có \(\Delta'=1+4=5>0\)
\(\Rightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)
b, Theo hệ thức Vi-et \(x_1x_2=-m^2+3m-4=-\left(m-\frac{3}{2}\right)^2-\frac{7}{4}< 0\)
nên pt có 2 nghiệm trái dấu
c, Thiếu đề , nhưng làm hộ 1 bước biến đổi như bạn dưới
b. delta = \(\left(2n-1\right)^2-4.1.n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)
pt luôn có 2 nghiệm phân biệt
c.\(\left\{{}\begin{matrix}x_1=\dfrac{2n-1-1}{2}=n-1\\x_2=\dfrac{2n-1+1}{2}=n\end{matrix}\right.\)
\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\)
(số bình phương luôn lớn hơn bằng 0) với mọi n
2, Ta có : \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)
Vậy pt luôn có 2 nghiệm pb
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2n-1\\x_1x_2=n\left(n-1\right)\end{matrix}\right.\)
Vì x1 là nghiệm của pt trên nên ta được
\(x_1^2=\left(2n-1\right)x_1-n\left(n-1\right)\)
Thay vào ta được
\(2nx_1-x_1-n^2+n-2x_2+3\)
bạn kiểm tra lại đề nhé
`x^2 - 2 ( m + 2 ) x + m^2 + 7 = 0` `(1)`
`a)` Thay `m = 1` vào `(1)`. Ta có:
`x^2 - 2 ( 1 + 2 ) x + 1^2 + 7 = 0`
`<=> x^2 - 6x + 8 = 0`
Ptr có: `\Delta' = b'^2 - ac = (-3)^2 - 8 = 1 > 0`
`=>` Ptr có `2` `n_o` pb
`x_1 = [ -b' + \sqrt{\Delta'} ] / a = [ -(-3) + \sqrt{1} ] / 1 = 4`
`x_2 = [ -b' - \sqrt{\Delta'} ] / a = [ -(-3) - \sqrt{1} ] / 1 = 2`
Vậy với `m = 1` thì `S = { 2 ; 4 }`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)` Ptr `(1)` có nghiệm `<=> \Delta' >= 0`
`<=> b'^2 - ac >= 0`
`<=> [ - ( m + 2 ) ]^2 - ( m^2 + 7 ) >= 0`
`<=> m^2 + 4m + 4 - m^2 - 7 >= 0`
`<=> 4m - 3 >= 0`
`<=> m >= 3 / 4`
Với `m >= 3 / 4`, áp dụng Vi-ét: `{(x_1 + x_2 = [-b] / a = 2m +4),(x_1 . x_2 = c / a = m^2 + 7):}`
Ta có: `-2x_1 + x_1 . x_2 - 2x_2 = 4`
`<=>x_1 . x_2 - 2 ( x_1 + x_2 ) = 4`
`<=> m^2 + 7 - 2 ( 2m +4 ) = 4`
`<=>m^2 + 7 - 4m - 8 - 4 = 0`
`<=> m^2 - 4m -5 = 0`
Ptr có: `\Delta' = b'^2 - ac = (-2)^2 - (-5) = 9 > 0`
`=>` Ptr có `2` `n_o` pb
`m_1 = [ -b' + \sqrt{\Delta'} ] / a = -(-2) + \sqrt{9} = 5` (t/m)
`m_2 = [ -b' - \sqrt{\Delta'} ] / a = -(-2) - \sqrt{3} = -1` (ko t/m)
Vậy `m = 5` thì ptr có `2` nghiệm t/m yêu cầu đề bài
\(∘Angel\)
\(a)\) Thay \(m=1\) vào \((1)\) cta có :
\(x^2− 2 ( 1 + 2 ) x + 1 ^2 + 7 = 0\)
\(x ^2 − 6 x + 8 = 0\)
Pt có : \(Δ ' = b ' ^2 − a c = ( − 3 ) ^2 − 8 = 1 > 0\)
Pt có 2 \(n\)\(o\) pb
\(x1=\dfrac{b'+\sqrt{\text{Δ '}}}{a}=\dfrac{-\left(-3\right)+\sqrt{1}}{1}=4\)
\(x2=\dfrac{-b'-\sqrt{\text{Δ '}}}{a}=\dfrac{-\left(-3\right)-\sqrt{1}}{1}=2\)
\(m=1\) thì \(S=\)\(\left\{2;4\right\}\)
\(\Delta'=1-4\left(2m-4\right)>0\Rightarrow m< \dfrac{17}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=2m-4\end{matrix}\right.\)
Từ \(x_1+x_2=-1\Rightarrow x_2=-1-x_1\)
Thế vào \(x_1^2=2x_2+5\)
\(\Rightarrow x_1^2=2\left(-1-x_1\right)+5\)
\(\Leftrightarrow x_1^2+2x_1-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=1\Rightarrow x_2=-2\\x_1=-3\Rightarrow x_2=2\end{matrix}\right.\)
Thế vào \(x_1x_2=2m-4\)
\(\Rightarrow\left[{}\begin{matrix}2m-4=-2\\2m-4=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\) (thỏa mãn)
\(x\left(3x-4\right)=2x^2+1\)
\(\Leftrightarrow3x^2-4x-2x^2-1=0\)
\(\Leftrightarrow x^2-4x-1=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)
Ta có :
\(A=x_1^2+x_2^2+3x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2\)
\(=\left(x_1+x_2\right)^2+x_1x_2\)
\(=4^2-1\)
\(=16-1\)
\(=15\)
\(x^2-2x=1-m\)
\(\Rightarrow x_1^2-2x_1=1-m\)
Ta có:
\(x_1^2-2x_2+x_1.x_2=4\)
\(\Leftrightarrow x_1^2-2x_1+2\left(x_1-x_2\right)+x_1.x_2=4\)
\(\Leftrightarrow\left(1-m\right)+2\sqrt{\left(x_1+x_2\right)^2-4x_1.x_2}+m-1=4\)\(\left(x_1>x_2\right)\)
\(\Leftrightarrow\sqrt{4-4\left(m-1\right)}=2\)
\(\Rightarrow m=1\)
Vậy...............