\(2\sqrt{3}-\sqrt{7x-x^2}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

ĐK: \(0\le x\le7\)

\(2\sqrt{3}-\sqrt{7x-x^2}=0\Leftrightarrow2\sqrt{3}=\sqrt{7x-x^2}\Leftrightarrow12=7x-x^2\)

\(\Leftrightarrow x^2-7x+12=0\Leftrightarrow x^2-4x-3x+12=0\Leftrightarrow x.\left(x-4\right)-3.\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\Leftrightarrow x=3\text{ hoặc }x=4\text{. Vậy S=}\left\{3;4\right\}\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

Lời giải:
ĐK: $x\geq \frac{-18}{7}$

PT $\Leftrightarrow x^2+3x-4-3(\sqrt{x+3}-2)-(\sqrt{7x+18}-5)=0$

$\Leftrightarrow (x-1)(x+4)-3.\frac{x-1}{\sqrt{x+3}+2}-\frac{7(x-1)}{\sqrt{7x+18}+5}=0$

$\Leftrightarrow (x-1)\left(x+4-\frac{3}{\sqrt{x+3}+2}-\frac{7}{\sqrt{7x+18}+5}\right)=0$

Xét các TH:

Nếu $x-1=0\Rightarrow x=1$ (thỏa mãn)

Nếu $x+4-\frac{3}{\sqrt{x+3}+2}-\frac{7}{\sqrt{7x+18}+5}=0$

$\Leftrightarrow (x+2)+1-\frac{3}{\sqrt{x+3}+2}+1-\frac{7}{\sqrt{7x+18}+5}=0$

$\Leftrightarrow x+2+\frac{\sqrt{x+3}-1}{\sqrt{x+3}+2}+\frac{\sqrt{7x+18}-2}{\sqrt{7x+18}+5}=0$

\(\Leftrightarrow (x+2)+\frac{x+2}{(\sqrt{x+3}+1)(\sqrt{x+3}+2)}+\frac{7(x+2)}{(\sqrt{7x+18}+2)(\sqrt{7x+18}+5)}=0\)

\(\Leftrightarrow (x+2)\left( 1+\frac{1}{(\sqrt{x+3}+1)(\sqrt{x+3}+2)}+\frac{7}{(\sqrt{7x+18}+2)(\sqrt{7x+18}+5)}\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn dương nên $x+2=0\Leftrightarrow x=-2$

Vậy $x=-2$ hoặc $x=1$

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

14 tháng 7 2019

\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)

\(\Leftrightarrow9x-7=7x+5\)

\(\Leftrightarrow9x-7x=5+7\)

\(\Leftrightarrow2x=12\)

\(\Leftrightarrow x=6\)

14 tháng 7 2019

\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\)

25 tháng 8 2019

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3.\)

\(\Rightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}\right)=3\)

Đặt : \(\sqrt{x+5}=a\Rightarrow x+5=a^2\)

\(\sqrt{x+2}=b\Rightarrow x+2=b^2\)\(\left(đk:a,b\ge0\right)\)

\(\Rightarrow a^2-b^2=x+5-x-2=3\left(1\right)\)

Mà theo phương trình, ta có :

\(\left(a-b\right)\left(1+ab\right)=3\)

\(\Rightarrow a+a^2b-b-ab^2=3\)\(\left(2\right)\)

Tự giải hệ 

25 tháng 8 2019

\(\Leftrightarrow1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)

\(\Leftrightarrow\sqrt{x^2+7x+10}-2-\sqrt{x+5}+2-\sqrt{x+2}+1=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+10}+2}+\frac{x+1}{2+\sqrt{x+5}}+\frac{x+1}{1+\sqrt{x+2}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{x+6}{\sqrt{x^2+7x+10}+2}+\frac{1}{2+\sqrt{x+5}}+\frac{1}{1+\sqrt{x+2}}\right)=0\)

Giải nốt nhá ^.^

21 tháng 5 2016

i)

\(x^2-x^2\sqrt{2}-2x-2\sqrt{2}x+1+3\sqrt{2}=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x^2-2x+3\right)=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2+2\sqrt{2}=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2=-2\sqrt{2}\)

=> Phương trình vô nghiệm

ii)

Đặt: \(6x^2-7x=a\)

Ta có: \(a^2-2a-3=0\)

\(\left(a-3\right)\left(a+1\right)=0\)

\(\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0\)

\(x=\frac{3}{2};-\frac{1}{3};1;\frac{1}{6}\)

21 tháng 5 2016

 Phương trình vô nghiệm

ii)

Đặt: $6x^2-7x=a$6x27x=a

Ta có: $a^2-2a-3=0$a22a3=0

$\left(a-3\right)\left(a+1\right)=0$(a3)(a+1)=0

$\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0$(6x27x3)(6x27x+1)=0

$

22 tháng 7 2019

\(ĐKXĐ:x;y\ge2\)

\(\hept{\begin{cases}\sqrt{x-2}-y\sqrt{y}=\sqrt{y-2}-x\sqrt{x}\left(1\right)\\3x^2-y^2-xy-7x+y+5=0\left(2\right)\end{cases}}\)

Giải \(\left(1\right)\Leftrightarrow\sqrt{x-2}-\sqrt{y-2}+x\sqrt{x}-y\sqrt{y}=0\)

                \(\Leftrightarrow\frac{x-2-y+2}{\sqrt{x-2}+\sqrt{y-2}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)

              \(\Leftrightarrow\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)

            \(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-2}+\sqrt{y-2}}+x+\sqrt{xy}+y\right)=0\)

Kết hợp ĐKXĐ dễ thấy cái ngoặc to luôn dương

Nên \(\sqrt{x}-\sqrt{y}=0\Rightarrow x=y\)

Thay vào pt (2) đc

\(3x^2-x^2-x^2-7x+x+5=0\)

\(\Leftrightarrow x^2-6x+5=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\left(thoa\cdot man\cdot DKXD\right)\\x=5\Rightarrow y=5\left(Thoa\cdot man\cdot DKXD\right)\end{cases}}\)

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Câu a)

Đặt \(\left\{\begin{matrix} \sqrt[3]{1-x}=a\\ \sqrt{x+2}=b\end{matrix}\right.\). Khi đó ta thu được hệ sau:

\(\left\{\begin{matrix} a+b=1\\ a^3+b^2=3\end{matrix}\right.\)\(\Rightarrow \left\{\begin{matrix} b=1-a\\ a^3+b^2=3\end{matrix}\right.\)

\(\Rightarrow a^3+(1-a)^2=3\)

\(\Rightarrow a^3+a^2-2a-2=0\)

\(\Leftrightarrow a^2(a+1)-2(a+1)=0\Leftrightarrow (a+1)(a^2-2)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=\pm \sqrt{2}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=2\\ x=1-\sqrt{8}\\ x=1+\sqrt{8}\end{matrix}\right.\)

Thử lại thấy $x=2$ và $x=1+\sqrt{8}$ thỏa mãn.

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Câu b)

Đặt \(\left\{\begin{matrix} \sqrt[3]{x^2-x-8}=a\\ \sqrt[3]{x^2-8x-1}=b\end{matrix}\right.\Rightarrow a^3-b^3=7x-7\)

PT trở thành:

\(\sqrt[3]{a^3-b^3+8}-a+b=2\)

\(\Rightarrow \sqrt[3]{a^3-b^3+8}=a-b+2\)

\(\Rightarrow a^3-b^3+8=(a-b+2)^3=a^3-b^3+8+3(a-b)(a+2)(-b+2)\)

(áp dụng công thức \((a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)\) )

\(\Rightarrow (a-b)(a+2)(-b+2)=0\Rightarrow \left[\begin{matrix} a=b\\ a=-2\\ b=2\end{matrix}\right.\)

Nếu \(a=b\Rightarrow x^2-x-8=x^2-8x-1\Rightarrow 7x-7=0\Rightarrow x=1\)

Nếu \(a=-2\Rightarrow x^2-x-8=-8\Rightarrow x^2-x=0\Rightarrow x=0; x=1\)

Nếu $b=2$ thì \(x^2-8x-1=8\Rightarrow x^2-8x-9=0\Rightarrow x=9; x=-1\)

Thử lại.............