Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g.\(\dfrac{1-3x}{6}+x-1=\dfrac{x+2}{2}\)
\(\Leftrightarrow\dfrac{\left(1-3x\right)+6\left(x-1\right)}{6}=\dfrac{3\left(x+2\right)}{6}\)
\(\Leftrightarrow\left(1-3x\right)+6\left(x-1\right)=3\left(x+2\right)\)
\(\Leftrightarrow1-3x+6x-6=3x+6\)
\(\Leftrightarrow-5=6\left(vô.lí\right)\)
Vậy pt vô nghiệm
h.\(\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)
\(\Leftrightarrow\dfrac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\dfrac{8\left(3x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-100-2\left(3x+2\right)=8\left(3x-1\right)\)
\(\Leftrightarrow30x+15-100-6x-4=24x-8\)
\(\Leftrightarrow-89=-8\left(vô.lí\right)\)
Vậy pt vô nghiệm
a: 5-3x=6x+7
=>-3x-6x=7-5
=>-9x=2
=>\(x=-\dfrac{2}{9}\)
b: \(\dfrac{3x-2}{6}-5=3-\dfrac{2\left(x+7\right)}{4}\)
=>\(\dfrac{3x-2}{6}+\dfrac{x+7}{2}=8\)
=>\(\dfrac{3x-2+3\left(x+7\right)}{6}=8\)
=>3x-2+3x+14=48
=>6x+12=48
=>6x=36
=>\(x=\dfrac{36}{6}=6\)
c: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
=>\(\left(x-1\right)\left(5x+3\right)-\left(3x-8\right)\left(x-1\right)=0\)
=>(x-1)(5x+3-3x+8)=0
=>(x-1)(2x+11)=0
=>\(\left[{}\begin{matrix}x-1=0\\2x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{11}{2}\end{matrix}\right.\)
d: \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
=>\(\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
\(\text{1. x + 5 = 12}\)
\(x=12-5\)
\(x=7\)
\(\text{2. 3x - 7 = 5}\)
\(3x=5+7\)
\(3x=12\)
\(x=12:3\)
\(x=4\)
\(\text{3. 4x - 9 = 15}\)
\(4x=15+9\)
\(4x=24\)
\(x=24:4\)
\(x=6\)
\(\text{4. 8x + 24 = 0 }\)
\(8x=-24\)
\(x=-24:8\)
\(x=-3\)
\(\text{5. 5 - 3x = 6x + 7}\)
\(-3x-6x=7-5\)
\(-9x=2\)
\(x=\frac{2}{-9}\)
\(6.x-\frac{3}{5}=6-\frac{1-2x}{3}\)
\(\Rightarrow\frac{3.\left(x-3\right)}{15}=\frac{90-5\left(1-2x\right)}{15}\)
\(\Rightarrow3.\left(x-3\right)=90-5.\left(1-2x\right)\)
\(3x-9=90-5+10x\)
\(3x-10x=90-5+9\)
\(-7x=94\)
\(\Rightarrow x=\frac{94}{-7}\)
chúc Bạn học tốt !!
1. x+5=12
<=> x= 7
2. 3x-7=5 <=> 3x=12<=> x= 4
3. 4x-9=15<=> 4x= 24<=> x= 6
4. 8x+24=0 <=> 8x= -24 <=> x= -3
5. 5-3x= 6x+7 <=> -3x-6x= 7-5 <=> -9x = 2 <=. x= -2/9
Giải phương trình: a) 3x+2=6x-7 b) 2 1 3x-11 ------- - ----- = ------------------ x+1 x-2 (x+1)(x-2)
\(a,3x+2=6x-7\)
\(\Leftrightarrow3x-6x=-7-2\)
\(\Leftrightarrow-3x=-9\)
\(\Leftrightarrow x=3\)
Câu còn lại mình ko rõ đề bài bạn ơi^^
a) Chuyển vế và rút gọn được 4x = 16, tìm được x = 4.
b) Đưa PT về dạng 5x = 15, tìm được x = 3
c) Quy đồng, khử mẫu thu được 6x - 9 + 24 = 2 - 2x.
Từ đó tìm được x = - 13 8
d) Quy đồng, khử mẫu thu được 30x + 9 = 36 + 24x +32
Từ đó tìm được x = 59 6
1: \(\Leftrightarrow6\left(3x-1\right)+3\left(6x-2\right)=4\left(1-3x\right)\)
=>18x-6+18x-6=4-12x
=>36x-12=4-12x
=>48x=16
hay x=1/3
2: \(\Leftrightarrow\left(2x-1\right)\left(2x-1+x-3\right)=0\)
=>(2x-1)(3x-4)=0
=>x=1/2 hoặc x=4/3
1) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3x^2-2x+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8-3x^2+2x-1=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=-\dfrac{7}{23}\)(nhận)
Vậy: \(S=\left\{-\dfrac{7}{23}\right\}\)
2) ĐKXĐ: \(x\notin\left\{\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
Ta có: \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\dfrac{3x+2}{3x-2}+\dfrac{6}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{3x+8}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(3x+8\right)\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
Suy ra: \(9x^2+6x+24x+16=9x^2\)
\(\Leftrightarrow30x+16=0\)
\(\Leftrightarrow30x=-16\)
hay \(x=-\dfrac{8}{15}\)(nhận)
Vậy: \(S=\left\{-\dfrac{8}{15}\right\}\)