\(x^4+\sqrt{x^2+2015}=2015\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2015

=> \(x^4-2015+\sqrt{x^2+2015}=0\)

<=> \(x^4-\left(x^2+2015\right)+x^2+\sqrt{x^2+2015}=0\)

<=> \(\left(x^2+\sqrt{x^2+2015}\right).\left(x^2-\sqrt{x^2+2015}\right)+\left(x^2+\sqrt{x^2+2015}\right)=0\)

<=> \(\left(x^2+\sqrt{x^2+2015}\right).\left(x^2-\sqrt{x^2+2015}+1\right)=0\)

=> \(x^2-\sqrt{x^2+2015}+1=0\)   (*) (Vì \(x^2+\sqrt{x^2+2015}>0\) với mọi x )

Đặt \(\sqrt{x^2+2015}=t\Rightarrow x^2+2015=t^2\Rightarrow x^2=t^2-2015\)

thay vào (*) ta được: t2 - 2015 - t + 1 = 0

=> t2 - t - 2014  = 0 

\(\Delta\) = 1 +  4. 2014 = 8057 

=> \(t_1=\frac{1+\sqrt{8057}}{2};t_2=\frac{1-\sqrt{8057}}{2}\)

nhận t1 => x2 = \(\left(\frac{1+\sqrt{8057}}{2}\right)^2-2015\) => x = .....

 

11 tháng 11 2018

pt <=> \(2x^2-20x+54-2\sqrt{x-4}-2\sqrt{6-x}=0\)

<=> \(\left(2x^2-20x+50\right)+\left(x-4-2\sqrt{x-4}+1\right)+\left(6-x-2\sqrt{6-x}+1\right)=0\)

<=> \(2\left(x-5\right)^2+\left(\sqrt{x-4}-1\right)^2+\left(\sqrt{6-x}-1\right)^2=0\)

<=> x = 5

12 tháng 9 2018

\(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\) 

Xét \(\left|x\right|=1\Leftrightarrow\sqrt{5-1}=\sqrt[3]{3-2}+1\)(đúng) 

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\) 

Xét \(\left|x\right|>1\Rightarrow\sqrt{5-x^6}< \sqrt[3]{3x^4-2}+1\)(loại) 

Xét \(\left|x\right|< 1\Rightarrow\sqrt{5-x^6}>\sqrt[3]{3x^4-2}+1\)(loại) 

Vậy Pt có nghiệm (1;-1)

10 tháng 11 2015

Đặt \(x=a;\sqrt{4-x^2}=b\Rightarrow a^2+b^2=4\)

pt <=> \(b+a=2+3ab\Leftrightarrow a^2+2ab+b^2=4+12ab+9a^2b^2\)

<=> \(4+2ab=4+12ab+9a^2b^2\)

8 tháng 6 2017

Đặt \(\sqrt{x^2+3}=a\ge\sqrt{3}\) (1)

pt \(\Leftrightarrow\left(a^2-3\right)^2+a-3=0\)

\(\Leftrightarrow a^4+9-6a^2+a-3=0\)

\(\Leftrightarrow a^4-4a^2-2a^2+4a-3a+6=0\)

\(\Leftrightarrow\left(a-2\right)\left(a^3+2a^2-2a-3=0\right)\)

\(\Leftrightarrow\left(a-2\right)\left(a^3+a^2+a^2+a-3a-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+1\right)\left(a^2+a-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+1\right)\left[\left(a+\dfrac{1}{2}\right)^2-\dfrac{13}{4}\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}a-2=0\\a+1=0\\\left(a+\dfrac{1}{2}\right)^2-\dfrac{13}{4}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=2\left(c\right)\\a=-1\left(l\right)\\a=\dfrac{-1+\sqrt{13}}{2}\left(l\right)\\a=\dfrac{-1-\sqrt{13}}{2}\left(l\right)\end{matrix}\right.\)

Thay a = 2 vào (1) ta được: \(\sqrt{x^2+3}=2\Rightarrow x^2+3=4\)

\(\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy ...

8 tháng 6 2017

Vây phương trình có nghiêm là x=1 hay x=-1Căn bậc hai

21 tháng 11 2018

\(ĐK:x\ge2\)

\(x^2-5x+4=2\sqrt{2x-4}\)

<=>\(x^2-5x+4=2\sqrt{2\left(x-2\right)}\)

<=>\(x^2-5x+4+x-2+2=\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2\)

<=>\(x^2-4x+4=\left(\sqrt{x-2}+2\right)^2\)

<=>\(\left(x-2\right)^2=\left(\sqrt{x-2}+2\right)^2\)

<=> \(\left(x-2-\sqrt{x-2}-2\right)\left(x-2+\sqrt{x-2}+2\right)=0\)

<=>\(\left(x-\sqrt{x-2}-4\right)\left(x+\sqrt{x-2}\right)=0\)

Xét \(x-\sqrt{x-2}-4=0\)

<=>\(x^2-8x+16=x-2\)

<=>\(x^2-9x+18=0\)

=> x=6;3(nhận)

Xet1\(x+\sqrt{x-2}=0\)

Do x\(\ge2\)=> pt vô nghiệm

Vậy ...

18 tháng 11 2022

a: ĐKXĐ: x>=0

b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)

\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)

\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)

\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)

\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)

=>\(x\in\left\{0;1.2996\right\}\)

24 tháng 5 2019

ĐKXĐ :  \(-4\le x\le4\)

TA CÓ : \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)

\(\Leftrightarrow\left[\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\right]\left(\sqrt{4-x}+2\right)=2x\left(\sqrt{x+4}+2\right)\)

\(\Leftrightarrow\left[x+4-4\right]\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)

\(\Leftrightarrow x\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)

\(\Leftrightarrow x\left[\sqrt{4-x}+2-2\sqrt{x+4}-4\right]=0\)

\(\Leftrightarrow x=0\)HOẶC  \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)

VỚI \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)

\(\Leftrightarrow\sqrt{4-x}-2=2\sqrt{x+4}\)

\(\Leftrightarrow4-x+4-4\sqrt{4-x}=4x+16\)

\(\Leftrightarrow8-x-4x-16=4\sqrt{4-x}\)

\(\Leftrightarrow-5x-8=4\sqrt{4-x}\)ĐK : \(-4\le x\le\frac{-8}{5}\)

\(\Leftrightarrow\left[-\left(5x+8\right)\right]^2=16\left(4-x\right)\)

\(\Leftrightarrow25x^2+64+80x=64-16x\)

\(\Leftrightarrow25x^2+96x=0\Leftrightarrow x\left(25x+96\right)=0\)

\(\Leftrightarrow x=0\)HOẶC \(x=\frac{-96}{25}\)(THỎA MÃN ĐK )                                                                               

                                                                                               VẬY PT CÓ 2 NGHIỆM \(x\in\left[0;\frac{-96}{25}\right]\)

P/S : CÁCH CỦA MÌNH KHÁ DÀI VÀ CHI TIẾT QUÁ . BẠN CÓ THỂ THAM KHẢO CÁCH KHÁC NHANH HƠN :>