
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bấm cái pt này vào máy tính casio, được nghiệm = -1. => Tách:
\(x^4+3x^3+4x^2+3x+1= 0 $\)
\(\Leftrightarrow\)\(x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0 \)
\(\Leftrightarrow\)\( x^3(x+1) +2x^2(x+1) + 2x(x+1) +(x+1)=0 \)
\(\Leftrightarrow\) \((x^3+2x^2+2x+1)(x+1)=0\) (1)
Đưa cái pt bậc 3 vào máy tính casio (mode-> eqn-> degree 3 hoặc \(ax^3+bx^2+cx+d\)), được 1 nghiệm = -1
tách như trên:
\(x^3+2x^2+2x+1=0 \)
\(\Leftrightarrow\)\(x^3+x^2+x^2+x+x+1=0 \)
\(\Leftrightarrow\)\(x^2(x+1) +x(x+1) + (x+1)=0 \)
\(\Leftrightarrow\)\((x^2+x+1)(x+1)=0 \) (2)
Chứng minh được cái pt bậc 2 vô nghiệm bằng cách ép bình phương cộng với 1 số dương thì lớn hơn 0. (3)
Từ (1),(2),(3) => x+1=0 <=> x=-1.
Kết Luận....
phương uyên copy ??? , m chứng minh cái (x^2+x+1) vô nghiệm đi copy sủa cái cmmm

Ta có: PT <=> x^4 + x^3 + 2x^3 + 2x^2 + 2x^2 + 2x + x +1
<=> x^3(x+1) + 2x^2(x+1) + 2x(x+1) + (x+1)
<=> (x+1)(x^3 + 2x^2 +1)
<=> (x+1)(x^3 + 2x^2 + 1)
<=> x+1=0 <=> x=-1 (x^3 + 2x^2 +1 vô nghiệm)
mình ko biết xin lỗi bạn nha
mình ko biết xin lỗi bạn nha
mình ko biết xin lỗi bạn nha
mình ko biết xin lỗi bạn nha

tui giải câu a thôi nha
chia phương trình cho \(x^2\)ta có:
\(x^2+3x+4+\frac{3}{x}+\frac{1}{x^2}\)=0
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+4\)=0
đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)\(\Rightarrow a^2-2+3a+4=0\)\(\Leftrightarrow a^2+3a+2=0\)
\(\Leftrightarrow a^2+a+2a+2=0\Leftrightarrow\left(a+1\right)\left(a+2\right)=0\)
\(\Leftrightarrow a+1=0\)hoặc\(a+2=0\)
*a+1=0\(\Rightarrow a=-1\Rightarrow x+\frac{1}{x}=1\Rightarrow x+\frac{1}{x}-1=0\)\(\Leftrightarrow\frac{x^2-x+1}{x}=0\Leftrightarrow x^2-x+1=0\)mà
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)\(\Rightarrow\)loại
*a+2=0\(\Rightarrow a=-2\Rightarrow x+\frac{1}{x}=-2\Rightarrow x+\frac{1}{x}+2=0\)\(\Leftrightarrow\frac{x^2+2x+1}{x}=0\Leftrightarrow\frac{\left(x+1\right)^2}{x}=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy phương trình có nghiệm x=-1

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :
\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)
\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)
Đến đây ta đặt \(x+\frac{60}{x}+16=t\left(1\right)\)
Ta được :
\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)
Từ đó ta lắp vào ( 1 ) tính được x

b) \(x^4+x^3-3x^2-4x-4=0\)
\(\Leftrightarrow x^4+2x^3-x^3-2x^2-x^2-2x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-2x^2+x^2-2x+x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+x+1\right)=0\)
Vì \(x^2+x+1>0\forall x\)( cách c/m mình nói sau )
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}}\)
Vậy....
Cách chứng minh :
\(x^2+x+1\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Hay \(x^2+x+1>0\forall x\)( đpcm )

Bài làm
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)
\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)
\(\Leftrightarrow6x+4=0\)
\(\Leftrightarrow x=-\frac{4}{6}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy x = -2/3 là nghiệm.
@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4
Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)

1. \(\left(4x+7\right)\left(3x+4\right)=\left(12x-5\right)\left(x-1\right)\)
\(12x^2+16x+21x+28=12x^2-12x-5x+5\)
\(12x^2+37x+28-12x^2+17x-5=0\)
54x+23=0
54x=-23
x=-23/54
2. \(\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(15x^2-5x-3x+1=15x^2+10x-21x-14\)
\(15x^2-8x+1-15x^2+11x+14=0\)
3x+15=0
3x=-15
x=-5
-1 nha bạn!
Chúc bạn học tốt! :)