Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x^2-6x+9}=3\)
⇔ \(\sqrt{\left(x-3\right)^2}=3\)
⇔ \(\left|x-3\right|=3\)
⇔ \(\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)
b) \(\sqrt{x^2-8x+16}=x+2\)
⇔ \(\sqrt{\left(x-4\right)^2}=x+2\)
⇔ \(\left|x-4\right|=x+2\)
⇔ \(\orbr{\begin{cases}x-4=x+2\left(x\ge4\right)\\4-x=x+2\left(x< 4\right)\end{cases}\Leftrightarrow}x=1\)
c) \(\sqrt{x^2+6x+9}=3x-6\)
⇔ \(\sqrt{\left(x+3\right)^2}=3x-6\)
⇔ \(\left|x-3\right|=3x-6\)
⇔ \(\orbr{\begin{cases}x-3=3x-6\left(x\ge3\right)\\3-x=3x-6\left(x< 3\right)\end{cases}}\Leftrightarrow x=\frac{9}{4}\)
d) \(\sqrt{x^2-4x+4}-2x+5=0\)
⇔ \(\sqrt{\left(x-2\right)^2}-2x+5=0\)
⇔ \(\left|x-2\right|-2x+5=0\)
⇔ \(\orbr{\begin{cases}x-2-2x+5=0\left(x\ge2\right)\\2-x-2x+5=0\left(x< 2\right)\end{cases}}\Leftrightarrow x=3\)
a)Đk:\(x\ge\frac{1}{2}\)
\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)
Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)
\(t^4-4t^2+4t-1=0\)
\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt
\(x^2-6x+9=0\) (1)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)
\(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x=3\)
hoặc \(x=1\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)
Mà 2 phương trình trên có 1 nghiệm chung
\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)
<=> x4+3x3=14x2+6x-4
\(\Leftrightarrow x^4+3x^3-\frac{7}{4}x^2-6x+4=\frac{49}{4}x^2\)
\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2\right)^2=\frac{49}{4}x^2\)
\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2\right)^2-\frac{49}{4}x^2=0\)
\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2+\frac{7}{2}x\right)\left(x^2+\frac{3}{2}x-2-\frac{7}{2}x\right)=0\)
\(\Leftrightarrow\left(x^2+5x-2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5x-2=0\\x^2-2x-2=0\end{cases}}\)
Đến đây bn tự làm tiếp nha
tk mk vs
\(x^4-6x^2-8x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy tập nghiệm \(S=\left\{-1;3\right\}\)
\(x^4-3x^3+3x^3-9x^2+3x^2-9x+x-3=0\)
\(x^3\left(x-3\right)+3x^2\left(x-3\right)+3x\left(x-3\right)+\left(x-3\right)=0\)
\(\left(x-3\right)\left(x^3+3x^2+3x+1\right)=0\)
\(\left(x-3\right)\left(x+1\right)^3=0\)
=> \(x-3=0\)hoặc \(x+1=0\)
=> x=3 hoặc x=-1