\(x^3-9x^2+27x=19\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

Mình thích nhân phân phối không thích ghép

(x-3)^3=x^3-3.3.x^2+3.3^2.x-3^3

ok

(x-3)^3=27+19=54

\(x=3+\sqrt[3]{54}=3+3\sqrt{2}\)

18 tháng 1 2017

Bài này giải theo phương trình tích 

  Ta có :  x^3 - 9x^2 + 27x =19

         <=> x^3 - 9x^2 + 27x -19 = 0

         <=>  x^3 - x^2 - 8x^2 + 8x + 19x -19 = 0

         <=>  x^2(x-1) - 8x(x-1) + 19(x-1) = 0

         <=>  (x-1)(x^2 - 8x + 19) = 0

  Ta CM được x^2 - 8x + 19 >0  

       => x-1= 0  <=> x=1

  Vậy phương trình có nghiêm x=1

19 tháng 3 2018

a) \(x^5-27+x^3-27x^2\) = 0

\(\Leftrightarrow x^3\left(x^2+1\right)-27\left(x^2+1\right)\)= 0

\(\Leftrightarrow\left(x^2+1\right)\left(x^3-27\right)=0\)

\(\Leftrightarrow x^3-27=0\) (Vì \(x^2+1>0\))

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+2\dfrac{3}{2}x+\dfrac{9}{4}+\dfrac{27}{4}\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{27}{4}\right]=0\)

\(\Leftrightarrow x-3=0\) (Vì \(\left(x+\dfrac{3}{2}\right)^2+\dfrac{27}{4}>0\))

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của phương trình là S = {3}

b)\(x^3-9x^2+19x-11=0\)

\(\Leftrightarrow\left(x^3-x^2\right)-\left(8x^2-8x\right)+\left(11x-11\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-8x+11\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2-\left(4+\sqrt{5}\right)x-\left(4-\sqrt{5}\right)x+11\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left\{x\left[x-\left(4+\sqrt{5}\right)\right]-\left(4-\sqrt{5}\right)\left[x-\left(4+\sqrt{5}\right)\right]\right\}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4-\sqrt{5}\right)\left(x-4+\sqrt{5}\right)=0\)

\(\Leftrightarrow x-1=0\) hoặc \(x-4-\sqrt{5}=0\) hoặc \(x-4+\sqrt{5}=0\)

\(\Leftrightarrow x=1\) hoặc \(x=4+\sqrt{5}\) hoặc \(x=4-\sqrt{5}\)

Vậy phương trình có tập nghiệm là \(S=\left\{1;4+\sqrt{5};4-\sqrt{5}\right\}\)

21 tháng 2 2018

\(x^5-27+x^3-27x^2=0\)

\(\left(x^5+x^3\right)-\left(27x^2+27\right)=0\)

\(x^3\left(x^2+1\right)-27\left(x^2+1\right)=0\)

\(\left(x^3-27\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x^3-27=0\)( Vì \(x^2+1>0\forall x\))

<=> x3 = 27

<=> x3 = 33

<=> x= 3

6 tháng 3 2018

x^3 - 9X^2 +19x -11 =0

<=> (x^3 - x^2) - (8x^2 - 8x) +(11x-11)=0

<=> x^2(x-1) - 8x(x-1) + 11(x-1)=0

<=> (x-1)(x^2-8x+11) = 0

<=> x-1=0

<=> x=1

6 tháng 3 2018

9x^3 - 6x^2 +12x=8

<=> 9x^3-6x^2+12x-8=0

<=. 3x^2(3x-2) + 4(3x-2)=0

<=> (3x-2)(3x^2 +4 ) =0

<=> 3x-2 = 0 (do 3x^2 +4 >= 4 >0)

<=> x= 2/3

27 tháng 7 2018

a) \(16x^2-8x+1=\left(4x\right)^2-2.4x.1+1^2=\left(4x-1\right)^2\)\(27x^3-27x^2+9x-1=\left(3x\right)^3-3.\left(3x\right)^2.1+3.3x.1^2-1^3=\left(3x-1\right)^3\)c) \(25x^2+20x+4=\left(5x\right)^2+2.5x.2+2^2=\left(5x+2\right)^2\) d) \(x^3+6x^2+12x+8=x^3+3x^2.2+3x.2^2+2^3=\left(x+2\right)^3\)

27 tháng 7 2018

Viết về bình phương của 1 tổng hoặc 1 hiệu. Lập phương của 1 tổng hoặc 1 hiệu

a)16x28x+116x2−8x+1

b)27x327x2+9x127x3−27x2+9x−1

c) 25x2+20x+425x2+20x+4

d) x3+6x2+12x+8

TRẢ LỜI

a/(4x)^2-2.4x+1^2=(4x-1)^2

b/SAI Đề nhé phải là 27x^3-9x^2+27x-1=(3x-1)^3

c/(5x)^2+2.5x+2^2=(5x-2)^2

d/x^3+3.2.x^2+3.2^2.x+2^3=(x+2)^3

16 tháng 10 2019

1)3.x^2 - 75 = 0

3.x^2 - 3.25 = 0

3.(x^2-25)=0

x^2-5^2=0

(x-5)(x+5)=0

=> x-5=0 hoặc x+5=0

=> x=5 hoặc x=-5

   

16 tháng 10 2019

1) \(3x^2-75=0\)

\(\Leftrightarrow3\left(x^2-25\right)=0\)

\(\Leftrightarrow x^2-25=0\)

\(\Leftrightarrow x^2=25\)

\(\Leftrightarrow x=\pm\sqrt{25}=\pm5\)

2) \(x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

3) \(x^3+3x^2+3x=0\)

\(\Leftrightarrow x^3+3x^2+3x+1=1\)

\(\Leftrightarrow\left(x+1\right)^3=1^3\)

\(\Leftrightarrow x+1=1\Leftrightarrow x=0\)

25 tháng 10 2020

\(-x^3+9x^2-27x+27\)

\(=-\left(x^3-9x^2+27x-27\right)\)

\(=-\left(x-3\right)^3\)