Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐXĐK: ...
\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)
\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)
\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))
\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)
d/
\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)
Đặt \(\sqrt{x^2+x+1}=a\)
\(\Leftrightarrow3x^2-5ax+2a^2=0\)
\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
a) Ta có: \(3x^2-5x+2=0\)
\(\Leftrightarrow3x^2-3x-2x+2=0\)
\(\Leftrightarrow3x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{2}{3}\right\}\)
b) Ta có: \(7x^2-5x-2=0\)
\(\Leftrightarrow7x^2-7x+2x-2=0\)
\(\Leftrightarrow7x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{-2}{7}\right\}\)
c) Ta có: \(\left(x^2+x\right)^2+5\left(x^2+x\right)+6=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+2\left(x^2+x\right)+3\left(x^2+x\right)+6=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+2\right)+3\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x^2+x+2\right)\left(x^2+x+3\right)=0\)(1)
Ta có: \(x^2+x+2\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall x\)
hay \(x^2+x+2\ne0\forall x\)(2)
Ta có: \(x^2+x+3\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{11}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)
hay \(x^2+x+3\ne0\forall x\)(3)
Từ (1), (2) và (3) suy ra \(x\in\varnothing\)
Vậy: Tập nghiệm \(S=\varnothing\)
d) Ta có: \(x-7\sqrt{x}-9=0\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\frac{7}{2}+\frac{49}{4}-\frac{49}{4}-\frac{36}{4}=0\)
\(\Leftrightarrow\left(\sqrt{x}-\frac{7}{2}\right)^2=\frac{85}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\frac{7}{2}=\frac{\sqrt{85}}{2}\\\sqrt{x}-\frac{7}{2}=-\frac{\sqrt{85}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\frac{\sqrt{85}}{2}+\frac{7}{2}=\frac{\sqrt{85}+7}{2}\\\sqrt{x}=\frac{-\sqrt{85}}{2}+\frac{7}{2}=\frac{7-\sqrt{85}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\left(\frac{\sqrt{85}+7}{2}\right)^2=\frac{67+7\sqrt{85}}{2}\\x=\left(\frac{7-\sqrt{85}}{2}\right)^2=\frac{67-7\sqrt{85}}{2}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{\frac{67+7\sqrt{85}}{2};\frac{67-7\sqrt{85}}{2}\right\}\)
e) Ta có: \(x-5\sqrt{x}+4=0\)
\(\Leftrightarrow x-\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=16\end{matrix}\right.\)
Vậy: Tập nghiệm S={1;16}
\(Đk:-1\le x\le3\)
Đặt: \(\hept{\begin{cases}u=\sqrt{x+1}\\v=\sqrt{3-x}\end{cases}}\) Ta suy ra:
\(u^2=x+1\)
\(3u^2-2v^2=5x-3\)
\(4u^2-v^2=5x+1\)
\(u^2+v^2=4\)
Pt đã cho trở thành:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\Leftrightarrow6u^2\left(2-u\right)=v^2\left(u+3\right)\)
Thay \(v^2=4-u\) ta thu được pt:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\)
\(\Leftrightarrow6u^2\left(2-u\right)=\left(4-u^2\right)\left(u+3\right)\Leftrightarrow\orbr{\begin{cases}u=2\\u=\frac{5+\sqrt{145}}{10}\end{cases}}\)
Từ đó tìm đc các nghiệm của pt là: \(\orbr{\begin{cases}x=3\\x=\frac{7+\sqrt{145}}{10}\end{cases}}\)