K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2023

\(x^2+4x+7=x+4\\ \Leftrightarrow x^2+4x-x+7-4=0\\ \Leftrightarrow x^2+3x+3=0\\ \Leftrightarrow\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=-\dfrac{3}{4}\left(vô.lí\right)\\ \Rightarrow S=\phi\)

4 tháng 8 2023

Bị lỗi hiển thị em hi

Em xem ha

13 tháng 7 2018

A) (x-3)2 < x2 -5x +4

\(\Leftrightarrow\)( x-3 )2 -x2+ 5x -4 < 0

\(\Leftrightarrow\)(x -3 -x ) (x-3 +x) +5x -4 < 0

\(\Leftrightarrow\)-3(2x -3 ) + 5x -4 < 0

\(\Leftrightarrow\)-6x +9 +5x -4 < 0

\(\Leftrightarrow\) -x +5 < 0

\(\Leftrightarrow\) 5< x

Vậy  bat phuong trinh A có  nghiệm là x >5 

B ) x2- 4x +3 \(\ge\)0

\(\Leftrightarrow\)x2 - 3x -x +3 \(\ge\)0

\(\Leftrightarrow\) x(x-3) -(x- 3) \(\ge\)0

\(\Leftrightarrow\)(x- 1) (x- 3) \(\ge\)0

\(\Leftrightarrow\)(x-1) \(\ge\)0 hoặc x-3 \(\ge\)0

 rồi bạn giải tiếp ,keets luận cả hai trường hợp

C) 4x -\(\frac{5}{3}\)> 7-\(\frac{x}{5}\)

\(\Leftrightarrow\)\(\frac{5\left(12x-5\right)}{15}\)>\(\frac{3\left(35-x\right)}{15}\)

\(\Leftrightarrow\)60x -25 > 105 -3x

\(\Leftrightarrow\)63x -130 > 0

rôi giải tiêp va kêt luan

15 tháng 7 2017
  1. Tập xác định của phương trình

  2. 2

    Rút gọn thừa số chung

  3. 3

    Biệt thức

  4. 4

    Biệt thức

  5. 5

    Nghiệm

16 tháng 7 2017

phaỉ giải rõ ra bạn nhé !

4 tháng 4 2016

6)x- x3- 10x2+2x+4=0

<=>x- x3- 10x2+2x+4=(x2-3x-2)(x2+2x-2)

=>(x2-3x-2)(x2+2x-2)=0

Th1:x2-3x-2=0

denta(-3)2-(-4(1.2))=17

\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-3\pm\sqrt{17}}{2}\)

Th2:x2+2x-2=0

denta:22-(-4(1.2))=12

\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-2\pm\sqrt{12}}{2}\)

=>x=-căn bậc hai(3)-1,

x=3/2-căn bậc hai(17)/2,

x=căn bậc hai(3)-1,

x=căn bậc hai(17)/2+3/2

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

18 tháng 3 2020

a) (x - 1).(x+ 5x - 2) - x+ 1 = 0

<=> (x - 1)(x^2 + 5x - 2) - (x - 1)(x^2 + x + 1) = 0

<=> (x - 1)(x^2 + 5x - 2 - x^2 - x - 1) = 0

<=> (x - 1)(4x - 3) = 0

<=> x = 1 hoặc x = 3/4

b) (x - 3)= (2x + 7)2

<=> (x - 3)^2 - (2x + 7)^2 = 0

<=> (x - 3 - 2x - 7)(x - 3 + 2x + 7) = 0

<=> (-x - 10)(3x + 4) = 0

<=> x = -10 hoặc x = -4/3

18 tháng 3 2020

c) \(\frac{3}{7}x-1=\frac{1}{7}x\left(3x-7\right)\)

\(\Leftrightarrow\frac{3}{7}x-1=\frac{3}{7}x^2-1\)

\(\Leftrightarrow\frac{3}{7}x-\frac{3}{7}x^2=-1+1\)

\(\Leftrightarrow\frac{3}{7}x\left(1-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{7}x=0\\1-x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

d) \(\left(x^2-2\right)\left(4x-3\right)=\left(x^2-2\right)\left(x-12\right)\)

\(\Leftrightarrow4x^3-3x^2+8x+6=x^3-12x^2-2x+24\)

\(\Leftrightarrow4x^3-x^3-3x^2+12x^2+8x+2x=24-6\)

\(\Leftrightarrow3x^3+9x^2+10x=18\)

\(\Leftrightarrow x\in\varnothing\)

4 tháng 2 2017

a) x3+4x2+x-6=0

<=> x3+x2-2x+3x2+3x-6=0

<=>x(x2+x-2)+3(x2+x-2)=0

<=>(x+3)(x2+x-2)=0

<=>(x+3)(x2+2x-x-2)=0

<=>(x+3)[x(x+2)-(x+2)]=0

<=>(x+3)(x-1)(x+2)=0

=> x+3=0 hay

x-1=0 hay

x+2=0

<=> x=-3 hay x=1 hay x=-2

4 tháng 2 2017

b)x3-3x2+4=0

\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)

\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

29 tháng 1 2017

mình chỉ viết đáp án thôi nhé! còn nếu ý nào bạn cần lời giải chi tiết mình sẽ giải cho!

a) S= { -2/3;-3/2}

b) S= {-5;1}

c) S= {-1/2;1}

d) S= {3/7;4}

e) S= {3;5}

NHỚ BẤM ĐÚNG CHO MÌNH NHÉ!

29 tháng 1 2017

cho mk lời giải chi tiết đi

30 tháng 9 2019

đặt \(\sqrt{3x^2+x+2}=a\)

\(a^2+4x^2+x^2-4x+4\)=4ax <=> \(\left(a^2-4ax+4x^2\right)+\left(x^2-4x+4\right)\)=0 <=>(a-2x)2+(x-2)2=0 

=>a=2x và x=2 đồng thởi xảy ra (1)

với x=2 =>a=\(\sqrt{3.4+2+2}\)=4=2x

vậy x=2 thỏa mãn điều kiện (1) =>pt co nghiệm duy nhất x=2

13 tháng 7 2017

\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-4\right)^2=8\left(x-3\right)\left(x+3\right)\)3)

\(\Leftrightarrow x^3+4^3-x\left(x-4\right)^2=8\left(x^2-3^2\right)\)

\(\Leftrightarrow x^3+64-x\left(x^2-8x+16\right)=8x^2-72\)

\(\Leftrightarrow x^3+64-x^3+8x^2-16x-8x^2-72=0\)

\(\Leftrightarrow-16x-8=0\)

\(\Leftrightarrow-8\left(2x-1\right)=0 \)

\(\Rightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy   \(x=\frac{1}{2}\)

30 tháng 4 2020

bài 1: 

a) ĐKXĐ: x khác 0; x khác -1

 \(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)

<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)

<=> (x - 1)(x + 1) + 1 - 2x = x

<=> x^2 - 2x = x

<=> x^2 - 2x - x = 0

<=> x^2 - 3x = 0

<=> x(x - 3) = 0

<=> x = 0 hoặc x - 3 = 0

<=> x = 0 hoặc x = 0 + 3

<=> x = 0 (ktm) hoặc x = 3 (tm)

=> x = 3

b) ĐKXĐ: x khác +-3; x khác -7/2

\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)

<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)

<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)

<=> 13x + 30 + x^2 = 12x + 42

<=> 13x + 30 + x^2 - 12x - 42 = 0

<=> x - 12 + x^2 = 0

<=> (x - 3)(x + 4) = 0

<=> x - 3 = 0 hoặc x + 4 = 0

<=> x = 0 + 3 hoặc x = 0 - 4

<=> x = 3 (ktm) hoặc x = -4 (tm)

=> x = -4

c) ĐKXĐ: x khác +-1

\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)

<=> x(x + 1) - 2x = 0

<=> x^2 + x - 2x = 0

<=> x^2 - x = 0

<=> x(x - 1) = 0

<=> x = 0 hoặc x - 1 = 0

<=> x = 0 hoặc x = 0 + 1

<=> x = 0 (tm) hoặc x = 1 (ktm)

=> x = 0

d) \(\frac{x^2+2x}{x^2+1}-2x=0\)

<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)

<=> x(x + 2) - 2x(x^2 + 1) = 0

<=> x^2 - 2x^3 = 0

<=> x^2(1 - 2x) = 0

<=> x^2 = 0 hoặc 1 - 2x = 0

<=> x = 0 hoặc -2x = 0 - 1

<=> x = 0 hoặc -2x = -1

<=> x = 0 hoặc x = 1/2

30 tháng 4 2020

bài 2: 

(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0

<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0

<=> 2x^2 - 2x - 3x + 3 = 0

<=> 2x(x - 1) - 3(x - 1) = 0

<=> (2x - 3)(x - 1) = 0

<=> 2x - 3 = 0 hoặc x - 1 = 0

<=> 2x = 0 + 3 hoặc x = 0 + 1

<=> 2x = 3 hoặc x = 1

<=> x = 3/2 hoặc x = 1

bài 3:

(x^3 + x^2) + (x^2 + x) = 0

<=> x^3 + x^2 + x^2 + x = 0

<=> x^3 + 2x^2 + x = 0

<=> x(x^2 + 2x + 1) = 0

<=> x(x + 1)^2 = 0

<=> x = 0 hoặc x + 1 = 0

<=> x = 0 hoặc x = 0 - 1

<=> x = 0 hoặc x = -1