Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) (x-3)2 < x2 -5x +4
\(\Leftrightarrow\)( x-3 )2 -x2+ 5x -4 < 0
\(\Leftrightarrow\)(x -3 -x ) (x-3 +x) +5x -4 < 0
\(\Leftrightarrow\)-3(2x -3 ) + 5x -4 < 0
\(\Leftrightarrow\)-6x +9 +5x -4 < 0
\(\Leftrightarrow\) -x +5 < 0
\(\Leftrightarrow\) 5< x
Vậy bat phuong trinh A có nghiệm là x >5
B ) x2- 4x +3 \(\ge\)0
\(\Leftrightarrow\)x2 - 3x -x +3 \(\ge\)0
\(\Leftrightarrow\) x(x-3) -(x- 3) \(\ge\)0
\(\Leftrightarrow\)(x- 1) (x- 3) \(\ge\)0
\(\Leftrightarrow\)(x-1) \(\ge\)0 hoặc x-3 \(\ge\)0
rồi bạn giải tiếp ,keets luận cả hai trường hợp
C) 4x -\(\frac{5}{3}\)> 7-\(\frac{x}{5}\)
\(\Leftrightarrow\)\(\frac{5\left(12x-5\right)}{15}\)>\(\frac{3\left(35-x\right)}{15}\)
\(\Leftrightarrow\)60x -25 > 105 -3x
\(\Leftrightarrow\)63x -130 > 0
rôi giải tiêp va kêt luan
Tập xác định của phương trình
2
Rút gọn thừa số chung
3
Biệt thức
4
Biệt thức
5
Nghiệm
6)x4 - x3- 10x2+2x+4=0
<=>x4 - x3- 10x2+2x+4=(x2-3x-2)(x2+2x-2)
=>(x2-3x-2)(x2+2x-2)=0
Th1:x2-3x-2=0
denta(-3)2-(-4(1.2))=17
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-3\pm\sqrt{17}}{2}\)
Th2:x2+2x-2=0
denta:22-(-4(1.2))=12
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-2\pm\sqrt{12}}{2}\)
=>x=-căn bậc hai(3)-1,
x=3/2-căn bậc hai(17)/2,
x=căn bậc hai(3)-1,
x=căn bậc hai(17)/2+3/2
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
a) (x - 1).(x2 + 5x - 2) - x3 + 1 = 0
<=> (x - 1)(x^2 + 5x - 2) - (x - 1)(x^2 + x + 1) = 0
<=> (x - 1)(x^2 + 5x - 2 - x^2 - x - 1) = 0
<=> (x - 1)(4x - 3) = 0
<=> x = 1 hoặc x = 3/4
b) (x - 3)2 = (2x + 7)2
<=> (x - 3)^2 - (2x + 7)^2 = 0
<=> (x - 3 - 2x - 7)(x - 3 + 2x + 7) = 0
<=> (-x - 10)(3x + 4) = 0
<=> x = -10 hoặc x = -4/3
c) \(\frac{3}{7}x-1=\frac{1}{7}x\left(3x-7\right)\)
\(\Leftrightarrow\frac{3}{7}x-1=\frac{3}{7}x^2-1\)
\(\Leftrightarrow\frac{3}{7}x-\frac{3}{7}x^2=-1+1\)
\(\Leftrightarrow\frac{3}{7}x\left(1-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{7}x=0\\1-x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d) \(\left(x^2-2\right)\left(4x-3\right)=\left(x^2-2\right)\left(x-12\right)\)
\(\Leftrightarrow4x^3-3x^2+8x+6=x^3-12x^2-2x+24\)
\(\Leftrightarrow4x^3-x^3-3x^2+12x^2+8x+2x=24-6\)
\(\Leftrightarrow3x^3+9x^2+10x=18\)
\(\Leftrightarrow x\in\varnothing\)
a) x3+4x2+x-6=0
<=> x3+x2-2x+3x2+3x-6=0
<=>x(x2+x-2)+3(x2+x-2)=0
<=>(x+3)(x2+x-2)=0
<=>(x+3)(x2+2x-x-2)=0
<=>(x+3)[x(x+2)-(x+2)]=0
<=>(x+3)(x-1)(x+2)=0
=> x+3=0 hay
x-1=0 hay
x+2=0
<=> x=-3 hay x=1 hay x=-2
b)x3-3x2+4=0
\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
mình chỉ viết đáp án thôi nhé! còn nếu ý nào bạn cần lời giải chi tiết mình sẽ giải cho!
a) S= { -2/3;-3/2}
b) S= {-5;1}
c) S= {-1/2;1}
d) S= {3/7;4}
e) S= {3;5}
NHỚ BẤM ĐÚNG CHO MÌNH NHÉ!
đặt \(\sqrt{3x^2+x+2}=a\)
\(a^2+4x^2+x^2-4x+4\)=4ax <=> \(\left(a^2-4ax+4x^2\right)+\left(x^2-4x+4\right)\)=0 <=>(a-2x)2+(x-2)2=0
=>a=2x và x=2 đồng thởi xảy ra (1)
với x=2 =>a=\(\sqrt{3.4+2+2}\)=4=2x
vậy x=2 thỏa mãn điều kiện (1) =>pt co nghiệm duy nhất x=2
\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-4\right)^2=8\left(x-3\right)\left(x+3\right)\)3)
\(\Leftrightarrow x^3+4^3-x\left(x-4\right)^2=8\left(x^2-3^2\right)\)
\(\Leftrightarrow x^3+64-x\left(x^2-8x+16\right)=8x^2-72\)
\(\Leftrightarrow x^3+64-x^3+8x^2-16x-8x^2-72=0\)
\(\Leftrightarrow-16x-8=0\)
\(\Leftrightarrow-8\left(2x-1\right)=0 \)
\(\Rightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
bài 1:
a) ĐKXĐ: x khác 0; x khác -1
\(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)
<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)
<=> (x - 1)(x + 1) + 1 - 2x = x
<=> x^2 - 2x = x
<=> x^2 - 2x - x = 0
<=> x^2 - 3x = 0
<=> x(x - 3) = 0
<=> x = 0 hoặc x - 3 = 0
<=> x = 0 hoặc x = 0 + 3
<=> x = 0 (ktm) hoặc x = 3 (tm)
=> x = 3
b) ĐKXĐ: x khác +-3; x khác -7/2
\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)
<=> 13x + 30 + x^2 = 12x + 42
<=> 13x + 30 + x^2 - 12x - 42 = 0
<=> x - 12 + x^2 = 0
<=> (x - 3)(x + 4) = 0
<=> x - 3 = 0 hoặc x + 4 = 0
<=> x = 0 + 3 hoặc x = 0 - 4
<=> x = 3 (ktm) hoặc x = -4 (tm)
=> x = -4
c) ĐKXĐ: x khác +-1
\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
<=> x(x + 1) - 2x = 0
<=> x^2 + x - 2x = 0
<=> x^2 - x = 0
<=> x(x - 1) = 0
<=> x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 0 + 1
<=> x = 0 (tm) hoặc x = 1 (ktm)
=> x = 0
d) \(\frac{x^2+2x}{x^2+1}-2x=0\)
<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)
<=> x(x + 2) - 2x(x^2 + 1) = 0
<=> x^2 - 2x^3 = 0
<=> x^2(1 - 2x) = 0
<=> x^2 = 0 hoặc 1 - 2x = 0
<=> x = 0 hoặc -2x = 0 - 1
<=> x = 0 hoặc -2x = -1
<=> x = 0 hoặc x = 1/2
bài 2:
(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0
<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0
<=> 2x^2 - 2x - 3x + 3 = 0
<=> 2x(x - 1) - 3(x - 1) = 0
<=> (2x - 3)(x - 1) = 0
<=> 2x - 3 = 0 hoặc x - 1 = 0
<=> 2x = 0 + 3 hoặc x = 0 + 1
<=> 2x = 3 hoặc x = 1
<=> x = 3/2 hoặc x = 1
bài 3:
(x^3 + x^2) + (x^2 + x) = 0
<=> x^3 + x^2 + x^2 + x = 0
<=> x^3 + 2x^2 + x = 0
<=> x(x^2 + 2x + 1) = 0
<=> x(x + 1)^2 = 0
<=> x = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 0 - 1
<=> x = 0 hoặc x = -1
\(x^2+4x+7=x+4\\ \Leftrightarrow x^2+4x-x+7-4=0\\ \Leftrightarrow x^2+3x+3=0\\ \Leftrightarrow\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=-\dfrac{3}{4}\left(vô.lí\right)\\ \Rightarrow S=\phi\)
Bị lỗi hiển thị em hi
Em xem ha