Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a) \(\orbr{\begin{cases}x-5=0\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=0\end{cases}}\)
b) \(\Leftrightarrow x^2-2x+1=0\)
<=> (x - 1)2 = 0
<=> x -1 = 0
<=> x = 1
a) \(x-\left(5x+3\right)=2x-4\)
\(\Leftrightarrow x-5x-3=2x-4\)
\(\Leftrightarrow x-5x-2x=-4+3\)
\(\Leftrightarrow-6x=-1\)
\(\Leftrightarrow x=\frac{1}{6}\)
b) \(2x^3-18x=0\)
\(\Leftrightarrow2x\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-9=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
c)\(\left(x-3\right)^2=\left(2x+7\right)^2\)
\(\Leftrightarrow x-3=2x+7\)
\(\Leftrightarrow x-2x=7+3\)
\(\Leftrightarrow-x=10\)
\(\Leftrightarrow x=-10\)
\(^{x^4+2x^3+2x^2+2x+1=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)=\left(x^2+1\right)+2x\left(x^2+1\right)=\left(x^2+1\right)\left(x^2+2x+1\right)=\left(x^2+1\right)\left(x+1\right)^2}\)
Vì \(\left(x^2+1\right)\)>0 => \(\left(x+1\right)^2\)=0 hay \(x=-1\)
<=> ( 2x2 - x - 3)( 2x2 - x - 3 - 7) + 42 = 0
<=> ( 2x2 + 2x - 3x - 3)( 2x2 - x - 10) + 42 = 0
<=> [2x(x + 1) - 3(x + 1)]( 2x2 + 4x - 5x - 10) + 42 = 0
<=> (x + 1)(2x - 3)[2x(x + 2) - 5(x + 2)] + 42 = 0
<=> (x + 1)(2x - 3)(x + 2)(2x - 5) + 42= 0
Mình chỉ làm được tới đó thôi ^-^", số 42 giờ chẳng biết vức đi đâu =))
a/ (x2 - 4) + (x + 2)(3 - 2x) = 0
=> (x - 2)(x + 2) + (x + 2)(3 - 2x) = 0
=> (x + 2)(x - 2 + 3 - 2x) = 0
=> (x + 2)(1 - x) = 0
=> x + 2 = 0 => x = -2
hoặc 1 - x = 0 => x = 1
b/ 2x3 + 6x2 = x2 + 3x
=> 2x3 + 5x2 - 3x = 0
=> x.(2x2 + 5x - 3) = 0
=> x = 0
hoặc 2x2 + 5x - 3 = 0 => (2x - 1)(x + 3) = 0
=> 2x - 1 = 0 => x = 1/2
hoặc x + 3 = 0 => x = -3
Vậy x = 0 , x = 1/2 , x = -3
c/ (2x - 5)2 = (x + 2)2
=> (2x - 5)2 - (x + 2)2 = 0
=> (2x - 5 + x + 2).(2x - 5 - x - 2) = 0
=> (3x - 3).(x - 7) = 0
=> 3x - 3 = 0 => 3x = 3 => x = 1
hoặc x - 7 = 0 => x = 7
Vậy x = 1 , x = 7
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\left(x-2\right)^2.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)
\(\Leftrightarrow4x^4-12x^3+7x^2+3x=0\)
\(\Leftrightarrow x\left(2x-3\right)\left(2x^2-3x-1\right)=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow2x=0+3\)
\(\Leftrightarrow2x=3\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy....
\(\left(x^2+2>0\right)\left(2x-3\right)=0\Leftrightarrow x=\dfrac{3}{2}\)