K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

Đặt x+7=tx+7=t , khi đó:
(t−1)4+(t+1)4=272(t-1)4+(t+1)4=272
⇔(t2−2t+1)2+(t2+2t+1)2=272⇔(t2-2t+1)2+(t2+2t+1)2=272
⇔(t2+1)2−4t(t2+1)+4t2+(t2+1)2+4t(t2+1)+4t2=272⇔(t2+1)2-4t(t2+1)+4t2+(t2+1)2+4t(t2+1)+4t2=272
⇔2(t2+1)2+8t2=272⇔2(t2+1)2+8t2=272
⇔t4+2t2+1+4t2=136⇔t4+2t2+1+4t2=136
⇔t4+6t2−135=0⇔t4+6t2-135=0
⇔t4−9t2+15t2−135=0⇔t4-9t2+15t2-135=0
⇔t2(t2−9)+15(t2−9)=0⇔t2(t2-9)+15(t2-9)=0
⇔(t2−9)(t2+15)=0⇔(t2-9)(t2+15)=0
Vì t2+15 ≥15∀tt2+15 ≥15∀t
⇔t=±3⇔t=±3
* Với t=3t=3 , ta có: x+7=3x+7=3 ⇔x=−4⇔x=-4
* Với t=−3t=-3 , ta có: x+7=−3x+7=-3 ⇔x=−10⇔x=-10

S= { −4;−10-4;-10 }
 

4 tháng 4 2020

\(\Leftrightarrow\left(x-7+1\right)^4+\left(x-7-1\right)^4=272\)

Đặt x-7 = t, ta có :

\(\left(t+1\right)^4+\left(t-1\right)^4=272\)

\(\Leftrightarrow t^4+4t^4+6t^2+4t+1+t^4-4t^3+6t^2-4t+1-272=0\)

\(\Leftrightarrow2t^4+12t^2-270=0\)

\(\Leftrightarrow t^4+6t^2-135=0\)

\(\Leftrightarrow\left(t^2+15\right)\left(t^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t^2+15=0\\t^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t^2=-15\left(loai\right)\\t=\pm3\end{cases}}}\)

\(\cdot t=3\Leftrightarrow x-7=3\Leftrightarrow x=10\)

\(\cdot t=-3\Leftrightarrow x-7=-3\Leftrightarrow x=4\)

Vậy phương trình có tập nghiệm \(S=\left\{10;4\right\}\)

Chúc bạn học tốt nha ~~

29 tháng 1 2019

(x+2)^4 + (x+8)^4 = 272 

*) Cách 1: đặt t = x+5 , có x+2 = t-3 ; x+8 = t+3 
ptrình thành (t-3)^4 + (t+3)^4 = 272 <=> (t²+9-6t)² + (t²+9+6t)² = 272 
<=> (t²+9)² + 36t² - 12t(t²+9) + (t²+9)² + 36t² + 12t(t²+9) = 272 
<=> (t²+9)² + 36t² = 136 <=> (t²)² + 54t² - 55 = 0 <=> t² = 1 ; t² = -55 (loại) 
* t = x+5 = -1 <=> x = -6 
* t = x+5 = 1 <=> x = -4 
KL: ptrình có 2 no: x = -6 or x = -4 
~ ~ ~ 
*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab 
đặt u = (x+8)(x+2) 
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u 

=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u² 

có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x... 

*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab 
đặt u = (x+8)(x+2) 
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u 

=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u² 

có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x... 

15 tháng 1 2017

(x+2)(x+8)(x+4)(x+6)

(x^2+10x+16)(x^2+10x+24)+16

(x^2+10x+20-4)(x^2+10x+20+4)+16

(x^2+10x+20)^2-16+16

(x^2+10x+20)^2

NV
10 tháng 11 2019

a/ Đặt \(a=x+7\) pt trở thành:

\(\left(a-1\right)^4+\left(a+1\right)^4=272\)

\(\Leftrightarrow2a^4+12a^2+2=272\)

\(\Leftrightarrow a^4+6a^2-135=0\Rightarrow\left[{}\begin{matrix}a^2=9\\a^2=-15\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+7=3\\x+7=-3\end{matrix}\right.\)

b/ Tương tự, đặt \(x-\frac{7}{2}=a\)

\(\left(a-\frac{3}{2}\right)^4+\left(a+\frac{3}{2}\right)^4=17\)

\(\Leftrightarrow2a^4+27a^2+\frac{81}{16}=17\)

Bạn tự giải tiếp

10 tháng 11 2019

Bạn ơi câu b bạn làm nốt cho mình được ko? Mình chưa hiểu lắm

10 tháng 2 2019

(x-6)^4+(x-8)^4=16

Đặt x-7=y

\(\Rightarrow\)(y+1)^4+(y-1)^4=16

y^4+4y^3+6y^2+4y+1+y^4-4y^3+6y^2-4y+1-16=0

2y^4+12y^2-14=0

y^4+6y^2-7=0

(y^4-y^2)+(7y^2-7)=0

y^2(y^2-1)+7(y^2-1)=0

(y^2-1)(y^2+7)=0

(y-1)(y+1)(y^2+7)=0

Vì y^2+7>0\(\forall\)y

\(\Rightarrow\)y-1=0 hoặc y+1=0

y=1 hoặc y=-1

+) y=1 thì x-7=1 vậy x=8

+)y=-1 thì x-7=-1 vậy x=6

  Vậy x=8;x=6

11 tháng 1 2017

Theo bài ra , ta có : 

\(\left(x-6\right)^4+\left(x-8\right)^4=16\)

\(\Leftrightarrow\left(x-6\right)^4+\left(x-8\right)^4=2^4\)

\(\Leftrightarrow\left(x-6\right)^2+\left(x-8\right)^2=2^2\)

\(\Leftrightarrow x^2-12x+36+x^2-16x+64=4\)

\(\Leftrightarrow2x^2-28x+96=0\)

\(\Leftrightarrow2x^2-16x-12x+96=0\)

\(\Leftrightarrow2x\left(x-8\right)-12\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(2x-12\right)=0\)

\(\Leftrightarrow2\left(x-6\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-8=0\end{cases}}\)  \(\Leftrightarrow\orbr{\begin{cases}x=6\\x=8\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{6,8\right\}\)

Chúc bạn học tốt =)) 

17 tháng 1 2017

Áp dụng  tính chất giao hoán, phân phối của  phép công

 cố + quá= cố+ quá

 quá+ cố =quá + cố

=> 2 (cố quá) =2 (quá cố)

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Bạn tham khảo lời giải tương tự tại đây. Trong đó bạn đặt $x-7=a$

Câu hỏi của khong có - Toán lớp 8 | Học trực tuyến

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)