Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 12x - 13 = 0
<=> x2 - 13x + x - 13 = 0
<=> ( x2 - 13x ) + ( x - 13 ) = 0
<=> x( x - 13 ) + ( x - 13 ) = 0
<=> ( x - 13 )( x + 1 ) = 0
<=> x - 13 = 0 hoặc x + 1 = 0
<=> x = 13 hoặc x = -1
Vậy phương trình có tập nghiệm S = { 13 ; -1 }
( m2 - 1 )x2 + ( m - 1 )x - 4m2 + m = 0
Để phương trình có nghiệm x = 2
thì ( m2 - 1 ).4 + ( m - 1 ).2 - 4m2 + m = 0
<=> 4m2 - 4 + 2m - 2 - 4m2 + m = 0
<=> 3m - 6 = 0
<=> m = 2
Vậy với m = 2 thì phương trình nhận x = 2 làm nghiệm
Vì phương trình có nghiệm là 2
Nên thay x = 2 vào phương trình trên ta được :
\(4m^2-4+2m-2-4m^2+m=0\)
\(\Leftrightarrow-6+3m=0\Leftrightarrow m=2\)
Vậy với x = 2 thì m = 2
\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)
\(\Leftrightarrow x^4-8x^3+16x^2+2x^2-8x+8-43=0\)
\(\Leftrightarrow x^4-8x^3+18x^2-8x-35=0\)
\(\Leftrightarrow x^4+x^3-9x^3-9x^2+27x^2+27x-35x-35=0\)
\(\Leftrightarrow x^3\left(x+1\right)-9x^2\left(x+1\right)+27x\left(x+1\right)-35\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-9x^2+27x-35\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-5x^2-4x^2+20x+7x-35\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-5\right)-4x\left(x-5\right)+7\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\left(x^2-4x+7\right)=0\)
Vì \(x^2-4x+7< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}}\)
Vậy....
IOStudy cần tuyển Mod cho ứng dụng chia sẻ IOShare với mong muốn xây dựng cộng đồng học tập tương tác thông minh, vui chơi lành mạnh và bổ ích hàng đầu tại Việt Nam. Kênh thông tin chia sẻ tài liệu học tập, kiến thức hữu ích cho các bạn học sinh phổ thông toàn quốc.các bạn quan truy cập theo đường dẫn này: https://iostudy.net/tuyen-dung-mod-cho-ung-dung-chia-se-ioshare-842/cms_cat/oth/cms_detail/179
#nguyenngoclan
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a, \(x^2-8x+16=81\Leftrightarrow x^2-8x-65=0\)
\(\Leftrightarrow\left(x-13\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=13\)
Vậy tập nghiệm của pt là S = { -5 ; 13 }
b, \(\frac{2x+2}{5}+\frac{3}{10}< \frac{3x-2}{4}\)
\(\Leftrightarrow\frac{8x+8+6}{20}< \frac{15x-10}{20}\Leftrightarrow8x+14< 15x-10\)
\(\Leftrightarrow-7x< -24\Leftrightarrow x>\frac{24}{7}\)
Vậy tập nghiệm của BFT là S = { x | x > 24/7 }
c, \(\frac{2}{x-2}+\frac{3}{x-3}=\frac{3x-20}{x^2}\)ĐK : \(x\ne0;2;3\)
\(\Leftrightarrow\frac{2x^2\left(x-3\right)+3x^2\left(x-2\right)}{x^2\left(x-2\right)\left(x-3\right)}=\frac{\left(3x-20\right)\left(x-2\right)\left(x-3\right)}{x^2\left(x-2\right)\left(x-3\right)}\)
tự khử mẫu, làm tiếp nhé, mình bị lười :>
d, \(3\left(x-11\right)-2\left(x+11\right)=1964\)
\(\Leftrightarrow3x-33-2x-22=1964\Leftrightarrow x-55=1964\Leftrightarrow x=2019\)
Vâỵ tập nghiệm của pt là S = { 2019 }
e, \(\left|2x-3\right|=5\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=5\Leftrightarrow x=4\)( tm )
Với \(x< \frac{3}{2}\)pt có dạng : \(-2x+3=5\Leftrightarrow-2x=2\Leftrightarrow x=-1\)( tm )
Vậy tập nghiệm của pt là S = { -1; 4 }
g, \(\frac{-2x+14}{x-5}+\frac{5x-3}{2x}=\frac{8}{x\left(x-5\right)}\)ĐK : \(x\ne0;5\)
\(\Leftrightarrow\frac{2x\left(-2x+14\right)+\left(5x-3\right)\left(x-5\right)}{2x\left(x-5\right)}=\frac{16}{2x\left(x-5\right)}\)
Tự khử mẫu tự giải nhá :>
Nguyễn TrươngTruong Viet TruongAkai Harumasoyeon_Tiểubàng giảiMysterious PersonMashiro Shiina
(x-2)(x+2)(x2-10)=72
<=>x4-14x2+40=72
<=>x4-14x2-32=0
<=>\(\left\{{}\begin{matrix}x^2=-2\left(VN\right)\\x^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
( x - 2 )( x + 2 )( x2 - 10 ) = 72
<=> ( x2 - 4 )( x2 - 10 ) - 72 = 0
Đặt t = x2 - 4
pt <=> t( t - 6 ) - 72 = 0
<=> t2 - 6t - 72 = 0
<=> t2 - 12t + 6t - 72 = 0
<=> t( t - 12 ) + 6( t - 12 ) = 0
<=> ( t - 12 )( t + 6 ) = 0
<=> ( x2 - 4 - 12 )( x2 - 4 + 6 ) = 0
<=> ( x2 - 16 )( x2 + 2 ) = 0
<=> ( x - 4 )( x + 4 )( x2 + 2 ) = 0
Vì x2 + 2 ≥ 2 > 0 ∀ x
=> x - 4 = 0 hoặc x + 4 = 0
<=> x = 4 hoặc x = -4
Vậy ...
(x - 2)(x + 2)(x2 - 10) = 72
<=> (x2 - 4)(x2 - 10) = 72
Đặt x2 - 7 = y
<=> (x2 - 7 + 3)(x2 - 7 - 3) = 72
<=> (y + 3)(y - 3) = 72
<=> y2 - 9 = 72
<=> y2 = 81
<=> y = \(\pm\)9
+) Với y = 9 thì x2 - 7 = y <=> x2 - 7 = 9 <=> x2 = 16 <=> x = \(\pm\)4
+) Với y = -9 thì x2 - 7 = y <=> x2 - 7 = -9 <=> x2 = -2
Vì x2 \(\ge\)0 mà -2 < 0 nên không tìm được x
Vậy x = \(\pm\)4