Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\tan 3x-\tan x=2$
$\Leftrightarrow \frac{3\tan x-\tan ^3x}{1-3\tan ^2x}-\tan x=2$
Đặt $\tan x=a$ thì:
$\frac{3a-a^3}{1-3a^2}-a=2$
$\Leftrightarrow a^3+3a^2+a-1=0$
$\Leftrihgtarrow a^2(a+1)+2a(a+1)-(a+1)=0$
$\Leftrightarrow (a+1)(a^2+2a-1)=0$
$\Leftrightarrow a=-1$ hoặc $a=-1\pm \sqrt{2}$
Đến đây thì đơn giản rồi.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{3}\end{matrix}\right.\)
\(\dfrac{sin3x}{cos3x}-\dfrac{sinx}{cosx}=2\)
\(\Rightarrow sin3x.cosx-cos3x.sinx=2cos3x.cosx\)
\(\Leftrightarrow sin2x=cos4x-cos2x\)
\(\Leftrightarrow cos^22x-sin^22x-sin2x-cos2x=0\)
\(\Leftrightarrow\left(sin2x+cos2x\right)\left(cos2x-sin2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=0\\cos\left(2x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
Đáp án A
Tìm điều kiện để phương trình ban đầu có nghĩa. Giải trực tiếp phương trình đã cho và đối chiếu điều kiện để suy ra nghiệm cần tìm.
Điều kiện
Ta có
Đối chiếu với điều kiện
Khi đó
Từ
Do vế phải của biểu thức trên không là số nguyên nó luôn đúng.
Vậy nghiệm của phương trình
`tan3x=tanx`
`<=>3x=x+kπ`
`<=>x=k π/2`
Phương trình có `4` điểm biểu diễn các nghiệm: `π/2 ; π ; (3π)/2 ; 2π`.
Để giải các phương trình này, chúng ta cần sử dụng các quy tắc và công thức của hàm tan và hàm cot. Hãy xem cách giải từng phương trình một:
a) Để giải phương trình tan(x) = -1, ta biết rằng giá trị của hàm tan là -1 tại các góc -π/4 và 3π/4. Vì vậy, x có thể là -π/4 + kπ hoặc 3π/4 + kπ, với k là số nguyên.
b) Để giải phương trình tan(x+20°) = tan(60°), ta có thể sử dụng quy tắc tan(A+B) = (tanA + tanB) / (1 - tanAtanB). Áp dụng công thức này, ta có: (tanx + tan20°) / (1 - tanxtan20°) = tan60°. Giải phương trình này, ta sẽ tìm được giá trị của x.
c) Để giải phương trình tan(3x) = tan(x-π/6), ta có thể sử dụng quy tắc tan(A-B) = (tanA - tanB) / (1 + tanAtanB). Áp dụng công thức này, ta có: (tan3x - tan(π/6)) / (1 + tan3xtan(π/6)) = 0. Giải phương trình này, ta sẽ tìm được giá trị của x.
d) Để giải phương trình tan(5x+π/4) = 0, ta biết rằng giá trị của hàm tan là 0 tại các góc π/2 + kπ, với k là số nguyên. Vì vậy, 5x+π/4 = π/2 + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.
e) Để giải phương trình cot(2x-π/4) = 0, ta biết rằng giá trị của hàm cot là 0 tại các góc π + kπ, với k là số nguyên. Vì vậy, 2x-π/4 = π + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.
a: tan x=-1
=>tan x=tan(-pi/4)
=>x=-pi/4+kpi
b: tan(x+20 độ)=tan 60 độ
=>x+20 độ=60 độ+k*180 độ
=>x=40 độ+k*180 độ
c: tan 3x=tan(x-pi/6)
=>3x=x-pi/6+kpi
=>2x=-pi/6+kpi
=>x=-pi/12+kpi/2
d: tan(5x+pi/4)=0
=>5x+pi/4=kpi
=>5x=-pi/4+kpi
=>x=-pi/20+kpi/5
e: cot(2x-pi/4)=0
=>2x-pi/4=pi/2+kpi
=>2x=3/4pi+kpi
=>x=3/8pi+kpi/2
tan3x.tanx = 1
⇔tan3x = cotx
⇔\(tan3x=tan\left(\dfrac{\Pi}{2}-x\right)\)
Bước 1: Sử dụng công thức tan(A + B) để biểu diễn các hàm tan của tổng hai góc. Ta có: tan(A + B) = (tanA + tanB) / (1 - tanA * tanB)
Bước 2: Áp dụng công thức trên vào phương trình ban đầu, ta có: tan(2x + 3x) * tan(7x) = (tan2x + tan3x) / (1 - tan2x * tan3x) + tan7x
Bước 3: Đơn giản hóa phương trình: tan(5x) * tan(7x) = (tan2x + tan3x) / (1 - tan2x * tan3x) + tan7x
Bước 4: Sử dụng công thức tan(A + B) và tan(A - B) để biểu diễn các hàm tan của tổng và hiệu hai góc. Ta có: tan(A + B) = (tanA + tanB) / (1 - tanA * tanB) tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)
Bước 5: Áp dụng công thức trên vào phương trình, ta có: (tan5x + tan7x) / (1 - tan5x * tan7x) = (tan2x + tan3x) / (1 - tan2x * tan3x) + tan7x
Bước 6: Đơn giản hóa phương trình và đưa về dạng tổng cộng các hàm tan: (tan5x + tan7x) * (1 - tan2x * tan3x) = (tan2x + tan3x) * (1 - tan5x * tan7x) + tan7x * (1 - tan2x * tan3x) * (1 - tan5x * tan7x)
Bước 7: Đơn giản hóa và rút gọn phương trình. Ta có: tan5x - tan2x * tan3x * tan5x + tan7x - tan2x * tan3x * tan7x = tan2x + tan3x - tan2x * tan3x + tan7x - tan2x * tan3x * tan7x + tan7x - tan2x * tan3x * tan7x
Bước 8: Rút gọn và sắp xếp các thành phần. Ta có: tan5x - tan2x * tan3x * tan5x - tan2x - tan3x + tan2x * tan3x + tan7x - tan2x * tan3x * tan7x - tan7x = 0
Bước 9: Đơn giản hóa và rút gọn phương trình. Ta có: tan5x - tan2x - tan3x + tan7x - tan2x * tan3x * (tan5x + tan7x) = 0
Bước 10: Phân tích phương trình và tìm các giá trị của x thỏa mãn.
1.
ĐK: \(x\ne\dfrac{\pi}{4}+k\pi\)
\(\dfrac{cos2x}{1-sin2x}=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Đối chiếu điều kiên ta được \(x=-\dfrac{\pi}{4}+k\pi\)
ĐK: \(x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{3}\)
\(tan3x=tanx\)
\(\Leftrightarrow3x=x+k\pi\)
\(\Leftrightarrow x=\dfrac{k\pi}{2}\)
Đối chiếu điều kiện ta được \(x=k\pi\) là nghiệm của phương trình.