K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

TA CÓ:

\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)

\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=5\Leftrightarrow2\sqrt{x-1}=10\Leftrightarrow\sqrt{x-1}=5\)

\(\Leftrightarrow x-1=25\Leftrightarrow x=26\)

15 tháng 9 2018

ĐKXĐ: \(x\ge1\)

PT (=) \(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\) 

     (=) \(\sqrt{x-1}-2+\sqrt{x-1}+3=5\) (=)  \(2\sqrt{x-1}=4\)(=) \(\sqrt{x-1}=2\)(=) X = 5 (nhận)

20 tháng 9 2017

học lớp 6 mà đã phải giải bài phương trình khó thế này khổ nha 

ta đặt \(\sqrt[3]{7x+1}=a;-\sqrt[3]{x^2-x-8}=b;\sqrt[3]{x^2-8x-1}=c\)

ta có \(a^3+b^3+c^3=7x+1-x^2+x+8+x^2-8x-1=8\)

từ phương trình ta có \(a+b+c=2\Rightarrow\left(a+b+c\right)^3=8\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=8\)

=> \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

tự thay vào và giải tiếp nhé hình như làm 3 trương hợp thì phải

23 tháng 3 2018

\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)

\(\Rightarrow\sqrt[3]{7x+1}+\sqrt[3]{x^2-8x-1}=2+\sqrt[3]{x^2-x-8}\)

Lập phương 2 vế lên ta được: \(\left(7x+1\right)\left(x^2-8x-1\right)=8\left(x^2-8x-8\right)\)

\(\Rightarrow\left(x-9\right)\left(x-1\right)\left(x+1\right)=0\)

\(2.10x^2+3x+1=\left(1+6x\right)\sqrt{x^2+3}\)

\(\Rightarrow x^2+3-\left(1+6x\right)\sqrt{x^2+3}+9x^2+3x-2=0\)

Nghiệm hơi xấu :(

31 tháng 10 2018

Ôi trời nhiều thía ? làm từng câu một ha !

\(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)

31 tháng 10 2018

b, ĐKXĐ \(x\ne\pm y\)

Đặt \(\frac{1}{x+y}=a\)  và  \(\frac{1}{x-y}=b\)(a và b khác 0)

Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)

          \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)

   \(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)

3 tháng 11 2016

\(A=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}×\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\frac{1}{\sqrt{x}+2}\)

A đạt GTLN khi \(2+\sqrt{x}\)đạt GTNN hay x là nhỏ nhất. Vậy A đạt GTLN là \(\frac{1}{2}\)khi x = 0

7 tháng 9 2019

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)

\(\Leftrightarrow\sqrt{x-1-2.\sqrt{x-1}.2+4}+\sqrt{x-1-2.\sqrt{x-1}.3+9}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)=5

bạn giải tiếp nhé

8 tháng 9 2019

@Hiền Hương bạn giải chi tiết hộ mk vs

12 tháng 9 2019

Xin lỗi bạn nha mình làm sai bucminh

Nhờ bạn sửa lại \(x\ge3\) và x<3 và nghiệm là \(1\le x\le5\) nha Trần Ngọc Thảo

12 tháng 9 2019

Ta có:\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}\)(ĐK: \(x\ge1\))

\(=\sqrt{\left(x-1\right)-2\sqrt{x-1}.2+4}+\sqrt{\left(x-1\right)+2\sqrt{x-1}.3+9}\)

\(=\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}\)

\(=\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}+3\right|\)

Thay vào phương trình ta được:

\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}+3\right|=5\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\sqrt{x-1}+3=5\)(vì \(\sqrt{x-1}\ge0\Rightarrow\sqrt{x-1}+3>0\))

-TH: \(\sqrt{x-1}-2\ge0\Leftrightarrow\sqrt{x-1}\ge2\Leftrightarrow x-1\ge4\Leftrightarrow x\ge3\)thì ta có:

\(\sqrt{x-1}-2+\sqrt{x-1}+3=5\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

\(\Leftrightarrow x=5\)

-TH:\(\sqrt{x-1}-2< 0\Leftrightarrow x< 3\) thì ta có:

\(2-\sqrt{x-1}+\sqrt{x-1}+3=5\)

\(\Leftrightarrow5=5\)(luôn đúng \(\forall1\le x< 3\))

Vậy nghiệm của phương trình là \(1\le x< 3\)\(x=5\)