Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c nè
Đặt \(3x=a\)
=>\(9x^2=a^2\)
Đăt \(x+2=b\)
=>\(\left(x+2\right)^2=b^2\)
ta có
\(a-b=3x-x-2=2x-2\)
<=>\(2x=a-b+2\)
Khi đó pt đã cho trở thành
\(2+3\sqrt[3]{a^2b}=a-b+3\sqrt[3]{ab^2}\)\(a-b+3\sqrt[3]{ab^2}-3\sqrt[3]{a^2b}=\left(\sqrt[3]{a}\right)^3-3\sqrt[3]{a^2b}+3\sqrt[3]{ab^2}-b^3=0\)
<=>\(\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^3=0\)
<=>\(\sqrt[3]{a}=\sqrt[3]{b}\)
<=>a=b
=>3x=x+2
<=>2x-2=0
<=>x=1
nhớ tick nha
Ta có
\(x=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.4.\sqrt{5}-8}-2}\)
\(=\frac{\sqrt{3}+1-\sqrt{3}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)-2}=\frac{1}{5-4-2}=-1\)
Thế vào ta được
\(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)
\(=\left(1-1+1\right)^{2013}+\left(1-1-1\right)^{2013}=1-1=0\)
\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)
\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)
Chắc tới đây bạn làm đc rồi nhỉ
Nguyễn Việt Lâm, Nguyễn Lê Phước Thịnh giúp vs!
ĐKXĐ: \(x\ge2\).
Với \(x\ge2\) ta có \(VP\le2;VT\ge2\).
Do đó nghiệm của pt là \(x=2\).