\(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

bài này dùng bdt nhé bạn

vế bên phải >=2 vế bên trái <=2 nên cả 2 vế =2 

==> x^2-16x+66=2 <=> (x-8)^2=0 ==> x=8

19 tháng 7 2017

X=8 ai thích thì k hộ!

19 tháng 9 2019

\(\hept{\begin{cases}\sqrt{x-7}+\sqrt{9-x}\le\sqrt{2\left(x-7+9-x\right)}=2\\x^2-16x+66\ge2\end{cases}}.Dau"="?\)

19 tháng 9 2019

ĐK: \(7\le x\le9\)

Áp dụng bunhiacopxki ta có:

\(\left(1.\sqrt{x-7}+1.\sqrt{9-x}\right)^2\le\left(1^2+1^2\right)\left(x-7+9-x\right)=4\)

=> \(\sqrt{x-7}+\sqrt{9-x}\le2\)(1)

Mặt khác: \(x^2-16x+66=x^2-2.x.8+64+2=\left(x-8\right)^2+2\ge2\)

=> \(x^2-16x+66\ge2\)(2)

Từ (1) và (2) ta có: \(\sqrt{x-7}+\sqrt{9-x}\le x^2-16x+66\)

Dấu "=" xảy ra khi và chỉ khi:

\(\hept{\begin{cases}x^2-16x+66=2\\\sqrt{x-7}+\sqrt{9-x}=2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-8\right)^2=0\\\frac{\sqrt{x-7}}{1}=\frac{\sqrt{x-9}}{1}\end{cases}\Leftrightarrow}x=8\) ( tm đk)

Vậy x = 8.

23 tháng 9 2016

Đk:\(7\le x\le9\)

Áp dụng Bđt Bunhiacopski cho VT ta có:

\(VT^2\le\left(1^2+1^2\right)\left(x-7+9-x\right)=4\)

\(\Rightarrow VT\le2\) (1)

\(VP=x^2-16x+64+2=\left(x-8\right)^2+2\ge2\) (2)

Từ (1) và (2) \(\Rightarrow VT=VP=2\)

Dấu = khi \(\hept{\begin{cases}\sqrt{x-7}+\sqrt{9-x}=2\\x^2-16x+66=0\end{cases}}\Rightarrow x=8\)

Vậy pt có nghiệm duy nhất là x=8

12 tháng 9 2016

Điều kiện xác định : \(7\le x\le9\)

Áp dụng bđt Bunhiacopxki vào vế trái : 

\(\left(1.\sqrt{x-7}+1.\sqrt{9-x}\right)^2\le\left(1^2+1^2\right)\left(x-7+9-x\right)=4\)

\(\Rightarrow\sqrt{x-7}+\sqrt{9-x}\le2\)

Xét vế phải : \(x^2-16x+66=\left(x^2-16x+64\right)+2=\left(x-8\right)^2+2\ge2\)

Suy ra pt tương đương với \(\begin{cases}\sqrt{x-7}+\sqrt{9-x}=2\\x^2-16x+66=2\end{cases}\) <=> x = 8

Vậy pt có nghiệm x = 8

\(VT\)

\(A=\sqrt{x-7}+\sqrt{9-x}\)

\(\Rightarrow A^2=2+2\sqrt{\left(x-7\right)\left(9-x\right)}\le2+\left(x-7\right)+\left(9-x\right)=4\)

\(\Rightarrow A\le2\)

\(VP\)

\(B=\left(x-8\right)^2+2\ge2\)

Theo đề bài , \(A=B\Rightarrow A=B=2\)

Do đó \(x-7=9-x\Leftrightarrow x=8\)

Vậy \(x=8\)

P/s tham khảo nha

NV
15 tháng 4 2019

a/ \(0\le x\le2019^2\)

Đặt \(\sqrt{x}=t\ge0\Rightarrow t^2-2019+\sqrt{2019-t}=0\)

Đặt \(\sqrt{2019-t}=a\Rightarrow2019=a^2+t\) ta được:

\(t^2-\left(a^2+t\right)+a=0\)

\(\Leftrightarrow t^2-a^2-\left(t-a\right)=0\)

\(\Leftrightarrow\left(t-a\right)\left(t+a\right)-\left(t-a\right)=0\)

\(\Leftrightarrow\left(t-a\right)\left(t+a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=t\\a=1-t\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2019-t}=t\\\sqrt{2019-t}=1-t\left(t\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t^2+t-2019=0\\t^2-t-2018=0\end{matrix}\right.\) \(\Rightarrow t=...\Rightarrow x=t^2=...\)

2 tháng 5 2020

a) ĐKXĐ : \(7\le x\le9\)

đặt \(A=\sqrt{x-7}+\sqrt{9-x}\)

\(\Rightarrow A^2=2+2\sqrt{\left(x-7\right)\left(9-x\right)}\le2+\left(x-7\right)+\left(9-x\right)=4\)

\(\Rightarrow A\le2\)

Mà \(x^2-16x+66=\left(x-8\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\)

do đó : \(x-7=9-x\Leftrightarrow x=8\)( t/m )

b) ĐKXĐ : \(x\le1\)

Ta có : \(\sqrt{1-x}+\sqrt{\left(x-1\right)\left(x-2\right)}-\left|x-2\right|\sqrt{\frac{x-1}{x-2}}=3\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{\left(x-1\right)\left(x-2\right)}=3\)

\(\Leftrightarrow\sqrt{1-x}=3\Leftrightarrow x=-8\left(tm\right)\)

13 tháng 7 2019

a) ĐKXĐ : \(x\ge-1\) 

\(\sqrt{16x+16}-\sqrt{9x+9}=4\)\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=4\)

\(\Leftrightarrow\sqrt{x+1}=4\Leftrightarrow x+1=16\Leftrightarrow x=15\)

b) ĐKXĐ : \(x\ge\frac{2}{3}\)

\(\sqrt{3x-2}-\sqrt{x+7}=1\Leftrightarrow3x-2+x+7-2\sqrt{3x-2}.\sqrt{x+7}=1\)

\(\Leftrightarrow4x+4-2\sqrt{3x^2+19x-14}=0\)\(\Leftrightarrow2x+2-\sqrt{3x^2+19x-14}=0\)

\(\Leftrightarrow2x+2=\sqrt{3x^2+19x-14}\Leftrightarrow\left(2x+2\right)^2=3x^2+19x-14\)

\(\Leftrightarrow4x^2+8x+4=3x^2+19x-14\Leftrightarrow x^2-11x+18=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=2\end{cases}\left(tm\right)}\)

c) câu cuối bình phương tương tự câu b

2 tháng 11 2019

Ai hack nick mình thì trả lại đi !!!

nick : 

  • Tên: Vô danh
  • Đang học tại: Trường Tiểu học Số 1 Nà Nhạn
  • Địa chỉ: Huyện Điện Biên - Điện Biên
  • Điểm hỏi đáp: 112SP, 0GP
  • Điểm hỏi đáp tuần này: 47SP, 0GP
  • Thống kê hỏi đáp

​​Ai hack hộ mình rồi gửi cho mình nhé mình cảm ơn 

Ai là bạn của mình chắn chắn biết nên vào phần bạn bè hỏi mình mới là chủ nick 

Mong olm xem xét ko cho ai hack nick nhau nữa ạ! Xin chân thành cảm ơn !

LInk : https://olm.vn/thanhvien/lehoangngantoanhoc