Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\left(a\ge0\right)\\\sqrt{x-2}=b\left(b\ge0\right)\end{cases}}\)
\(\Rightarrow a^2-b^2=3\)
\(1PT\Leftrightarrow\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
Tới đây tự làm tiếp nhé
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
a, \(\sqrt{x}+\sqrt{x+\sqrt{1-x}}=1\)(ĐK: \(0\le x\le1\))
\(\Leftrightarrow\sqrt{x+\sqrt{1-x}}=1-\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{x+\sqrt{1-x}}\right)^2=\left(1-\sqrt{x}\right)^2\)
\(\Leftrightarrow x+\sqrt{1-x}=1-2\sqrt{x}+x\)
\(\Leftrightarrow\sqrt{1-x}=1-2\sqrt{x}\)(ĐK: \(0\le x\le\frac{1}{4}\))
\(\Leftrightarrow\left(\sqrt{1-x}\right)^2=\left(1-2\sqrt{x}\right)^2\)
\(\Leftrightarrow1-x=1-4\sqrt{x}+4x\)
\(\Leftrightarrow5x-4\sqrt{x}=0\)
\(\Leftrightarrow5x=4\sqrt{x}\)
\(\Leftrightarrow25x^2=16x\)
\(\Leftrightarrow25x^2-16x=0\)
\(\Leftrightarrow x\left(25x-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\25x-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=\frac{16}{25}\left(L\right)\end{cases}}\)
Vậy PT có nghiệm là x = 0
1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v
nếu vế phải là \(2\sqrt{2}\)thì làm như này:
Ta có: \(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)
\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\) (bình phương cả 2 vế rùi khai triển dựa trên hằng đẳng thức)
\(\Leftrightarrow2x+2x-2=8\Leftrightarrow4x=10\Leftrightarrow x=\frac{2}{5}\)
\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{x-1}-1=0\)
\(\Leftrightarrow x-1-\sqrt{x-1}-1=0\) (1)
Đặt \(\sqrt{x-1}\) = t (t \(\ge0\))
pttt : t2 - t - 1 =0
\(\Leftrightarrow\left(t-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{1-\sqrt{5}}{2}\left(ktm\right)\\t=\dfrac{1+\sqrt{5}}{2}\left(tm\right)\end{matrix}\right.\)
=> \(\sqrt{x-1}=\dfrac{1+\sqrt{5}}{2}\)
\(\Leftrightarrow x-1=\dfrac{3+\sqrt{5}}{2}\)
\(\Leftrightarrow x=\dfrac{5+\sqrt{5}}{2}\) (tm)
p/s: thử lại hộ mình nhaa
cái chỗ kia sai r á : \(\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
như này mới đúng