Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lag tí -.-'
`ĐK:2<=x<=6`
BP 2 vế ta có:
`x-2+6-x+2\sqrt{(x-2)(6-x)}=x^2-8x+24`
`<=>4+2\sqrt{(x-2)(6-x)}=x^2-8x+24`
`<=>2\sqrt{(x-2)(6-x)}=x^2-8x+20`
`<=>2sqrt{-x^2+8x-12}=x^2-8x+20`
`<=>-x^2+8x-20+2sqrt{-x^2+8x-12}=0`
`<=>-x^2+8x-12+2sqrt{-x^2+8x-12}-8=0`
Đặt `sqrt{-x^2+8x-12}=a(a>=0)`
`pt<=>a^2+2a-8=0`
`<=>a=2(tm),a=-4(l)`
`<=>-x^2+8x-12=4`
`<=>x^2-8x+16=0`
`<=>(x-4)^2=0<=>x=4(tmđk)`
Vậy `S={4}`
\(\sqrt{x-2}+\sqrt{6-x}\text{=}\sqrt{x^2-8x+24}\)
\(ĐKXĐ:2\le x\le6\)
Xét VP của pt ta thấy : \(\sqrt{x^2-8x+24}\text{=}\sqrt{x^2-8x+16+8}\)
\(\text{=}\sqrt{\left(x-4\right)^2+8}\)
\(\Rightarrow VP\ge\sqrt{8}\)
Xét VT của pt ta có :
\(VT^2\text{=}x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
\(VT^2\text{=}4+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
Áp dụng BĐT cô si cho 2 số không âm ta có :
\(2\sqrt{\left(x-2\right)\left(6-x\right)}\le\left(\sqrt{x-2}\right)^2+\left(\sqrt{6-x}\right)^2\)
\(\text{=}x-2+6-x\text{=}4\)
\(\Rightarrow VT^2\le8\)
\(\Rightarrow VT\le\sqrt{8}\)
Để \(VT\text{=}VP\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4\text{=}0\\\sqrt{x-2}\text{=}\sqrt{6-x}\end{matrix}\right.\)
\(\Leftrightarrow x=4\left(TM\right)\)
Vậy...........
=>\(\sqrt{\left(x+3\right)^2}\)+ \(\sqrt{\left(x+4\right)^2}\)+\(\sqrt{\left(x+5\right)^2}\)=9x
=> x + 3 + x + 4 + x + 5 = 9x
=> - 6x = - 12
=> x=2
Ủa sao phá đc trị tuyệt đối hay v bạn? (căn a^2 = trị tuyệt đối của a )
\(\sqrt{\left(x-4\right)^2}=x+2\)
\(\left[{}\begin{matrix}x-4=x+2\\x-4=-x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-4-x-2=0\\x-4+x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}-6=0\left(vonghiem\right)\\2x-2=0\end{matrix}\right.\Rightarrow x=1\left(tm\right)\)
Thấy : \(x^2-4x+16=\left(x-2\right)^2+12>0\forall x\)
P/t \(\Leftrightarrow2\left(x^2-4x+16\right)-36+\sqrt{x^2-4x+16}=0\)
Đặt \(t=\sqrt{x^2-4x+16}>0\) ; khi đó :
\(2t^2+t-36=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-\dfrac{9}{2}\left(L\right)\end{matrix}\right.\)
Với t = 4 hay \(\sqrt{x^2-4x+16}=4\Leftrightarrow x^2-4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy ...
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
Ghi thiếu đề bài nên tl lại
`sqrt{x-2}+sqrt{6-x}=x^2-8x+16+2sqrt2`
Áp dụng BĐT bunhia ta có:
`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`
`=>VT<=2sqrt2(1)`
Mặt khác:
`VP=x^2-8x+16+2sqrt2`
`=(x-4)^2+2sqrt2>=2sqrt2`
`=>VP>=2sqrt2(2)`
`(1)(2)=>VT=VP=2sqrt2`
`<=>x=4`
Vậy `S={4}`
`sqrt{x-2}+sqrt{6-x}=x^2-8x+2sqrt2`
Áp dụng BĐT bunhia ta có:
`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`
`=>VT<=2sqrt2(1)`
Mặt khác:
`VP=x^2-8x+16+2sqrt2`
`=(x-4)^2+2sqrt2>=2sqrt2`
`=>VP>=2sqrt2(2)`
`(1)(2)=>VT=VP=2sqrt2`
`<=>x=4`
Vậy `S={4}`