\(\sqrt{5x^2+27x+25}-5\sqrt{x+1}=\sqrt{x^2-4}\)

Mọi người...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2019

ĐK:\(\hept{\begin{cases}5x^2+27x+25\ge0\\x+1\ge0\\x^2-4\ge0\end{cases}}\)(*)

\(pt\Leftrightarrow\sqrt{5x^2+27x+25}=5\sqrt{x+1}+\sqrt{x^2-4}\)

\(\Leftrightarrow5x^2+27x+25=25x+25+x^2-4+10\sqrt{\left(x+1\right)\left(x^2-4\right)}\)

\(\Leftrightarrow4x^2+2x+4=10\sqrt{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow2x^2+x+2=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)

Đặt \(\hept{\begin{cases}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{cases}}\)\(\Rightarrow2a^2+3b^2=5ab\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\2a=3b\end{cases}}\)..............

7 tháng 1 2018

Mình ko giải đc ko

7 tháng 1 2018

MỤC ĐÍCH CỦA MÀY LÀ QUẢNG CÁO NHẠC THÌ YÊU CẦU CÚT OK?

CÒN NẾU MÀY MÀY MUỐN HỎI THẬT SỰ THÌ XIN MÀY CHỈ GÕ ĐỀ TOÁN VÀ ĐỪNG CHO THÊM MẤY THỨ TẠP CHẤT KIA VÀO.

CHỨ KHÔNG PHẢI LÀ HỎI MỘT CÁCH CHỐNG CHẾ KIA NHÉ 

NV
11 tháng 6 2019

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{5x^2+27x+25}=5\sqrt{x+1}+\sqrt{x^2-4}\)

\(\Leftrightarrow5x^2+27x+25=25x+25+x^2-4+10\sqrt{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow2x^2+x+2=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow2\left(x^2-x-2\right)+3\left(x+2\right)=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{matrix}\right.\)

\(\Rightarrow2a^2+3b^2=5ab\Leftrightarrow2a^2-5ab+3b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x-2}=\sqrt{x+2}\\2\sqrt{x^2-x-2}=3\sqrt{x+2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x+2\\4\left(x^2-x-2\right)=9\left(x+2\right)\end{matrix}\right.\) \(\Leftrightarrow...\)

9 tháng 7 2017

1.a)Ta có :

\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x+3\left(x\ge1\right)\)

=>\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-2\right)^2}=x+3\)

=> \(\left|x-1\right|-\left|x-2\right|=x-3\) ( Vì \(x\ge1=>x-1\ge0\) ;\(x-2\ge2\))

=> x-1-(x-2)=x-3

=>x-1-x+2=x-3

=>-x=-=>x=4

9 tháng 7 2017

Câu b làm tt nha còn câu c thì bó tay

NV
9 tháng 8 2020

6.

Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)

\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)

\(\Leftrightarrow5x^2+6x+5=16x^2\)

\(\Leftrightarrow11x^2-6x-5=0\)

\(\Rightarrow x=1\)

NV
9 tháng 8 2020

4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)

5.

\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)

Đặt \(\sqrt{x^2+x+6}=t>0\)

\(t^2-\left(2x+1\right)t+6x-6=0\)

\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)

15 tháng 10 2017

\(Mong mn giải giúp, một bài thôi cũng được. \)

15 tháng 10 2017

bài 1:

\(\sqrt{x+5}+x=5\\ \Leftrightarrow\sqrt{x+5}=5-x\\ \Leftrightarrow\left(\sqrt{x+5}\right)^2=\left(5-x\right)^2\\ \Leftrightarrow x+5=25+10x+x^2\\ \Leftrightarrow x^2+9x+20=0\\ \Leftrightarrow x^2+9x+20,25-0,25=0\\ \Leftrightarrow\left(x+4,5\right)^2=0,25\\ \Rightarrow\left[{}\begin{matrix}x+4,5=0,5\\x+4,5=-0,5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.