Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4\sqrt{4x-8}-2\sqrt{9x-18}+\sqrt{16x-32}=5\)
\(\rightarrow4.2\sqrt{x-2}-2.3\sqrt{x-2}+4\sqrt{x-2}=5\)
\(\rightarrow\sqrt{x-2}\left(8-6+4\right)=5\)
\(\rightarrow6\sqrt{x-2}=5\)
\(\rightarrow\sqrt{x-2}=\frac{5}{6}\)
\(\rightarrow x-2=\frac{25}{36}\)
\(\Rightarrow x=\frac{97}{36}\)
b)\(\sqrt{x^2+6x+9}-2=7\)
\(\rightarrow\sqrt{\left(x+3\right)^2}=9\)
\(\rightarrow x+3=9\)
\(\Rightarrow x=6\)
Nhớ tick mik nha
à ừ, nhầm chút!! thông cảm nha! có gì bạn tham khảo bài của Mo Nguyễn Văn
\(a,\sqrt{x+1}=\sqrt{2-x}\)
\(\Rightarrow x+1=2-x\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
a) \(ĐKXĐ:-1\le x\le2\)
Bình phương 2 vế ta có:
\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )
Vậy \(x=\frac{1}{2}\)
b) \(ĐKXĐ:x\ge1\)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )
Vậy \(x=65\)
c) \(ĐKXĐ:x\ge1\)
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )
Vậy \(x=5\)
1.
\(\sqrt{14+6\sqrt{5}}-\sqrt{\dfrac{\sqrt{5}-2}{\sqrt{5}+2}}\)
=\(\sqrt{9+6\sqrt{5}+5}-\dfrac{\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+2}}\)
=\(\sqrt{\left(3+\sqrt{5}\right)^2}-\dfrac{\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}}{\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}+2\right)}}\)
= \(3+\sqrt{5}-\dfrac{\sqrt{5-4}}{\sqrt{\left(\sqrt{5}+2\right)^2}}\)
= \(\dfrac{3\left(\sqrt{5}+2\right)}{\sqrt{5+2}}+\dfrac{\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}+2}-\dfrac{1}{\sqrt{5}+2}\)
=\(\dfrac{5\sqrt{5}+10}{\sqrt{5}+2}=\dfrac{5\left(\sqrt{5}+2\right)}{\sqrt{5}+2}=5\)
2, \(\sqrt{4x+8}+\sqrt{9x+18}-\sqrt{9}=\sqrt{16x+32}\)
⇔\(\sqrt{4\left(x+2\right)}+\sqrt{9\left(x+2\right)}-3=\sqrt{16\left(x+2\right)}\)
⇔\(2\sqrt{x+2}+3\sqrt{x+2}-4\sqrt{x+2}=3\)
\(\Leftrightarrow\sqrt{x+2}=3\)
⇔\(x+2=9\)
⇔x=7
1/ \(\Leftrightarrow\left|2x-1\right|=7\Leftrightarrow\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
2/ \(\Leftrightarrow6\sqrt{x+2}-2\sqrt{x+2}=9\sqrt{x+2}-10\)
\(\Leftrightarrow5\sqrt{x+2}=10\)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x=2\)
b) ĐK: \(x\le3\)
\(\sqrt{x-3}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)
\(\Leftrightarrow\)\(\sqrt{x-3}-\sqrt{9.\left(x-3\right)}+1,25\sqrt{16\left(3-x\right)}=6\)
\(\Leftrightarrow\)\(\sqrt{x-3}-3\sqrt{3-x}+5\sqrt{3-x}=6\)
\(\Leftrightarrow\)\(3\sqrt{3-x}=6\)
\(\Leftrightarrow\)\(\sqrt{3-x}=2\)
\(\Leftrightarrow\)\(3-x=4\)
\(\Leftrightarrow\)\(x=-1\) (t/m)
Vậy....