Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)+2.\sqrt{2x-5}\cdot3+9}+\sqrt{\left(2x-5\right)-2\sqrt{2x-5}.1+1}=4\)\(\Leftrightarrow\sqrt{\left(2x-5+3\right)^2}+\sqrt{\left(2x-5-1\right)^2}=4\)
\(\Leftrightarrow\left|2x-2\right|+\left|2x-6\right|=4\)
\(\Leftrightarrow\left|x-1\right|+\left|x-3\right|=4\)
Xét x<1:
=>1-x+3-x=4
=>-2x=0
=>x=0
Xét \(1\le x< 3\)
=>x-1+3-x=4
=>0x=2(vô lý)
Xét \(x\ge3\)
=>x-1+x-3=4
=>2x=-2
=>x=-1
Bài làm:
đk: \(x\ge3\)
Pt <=> \(\left(\sqrt{x-\sqrt{2x-5}-4}+\sqrt{x+\sqrt{2x-5}-4}\right)^2=\left(\sqrt{2}\right)^2\)
<=> \(x-\sqrt{2x-5}-4+x+\sqrt{2x-5}-4+2\sqrt{\left(x-4\right)^2-2x+5}=2\)
<=> \(2x-10=-2\sqrt{x^2-4x+4-2x+5}\)
<=> \(2x-10+2\sqrt{x^2-6x+9}=0\)
<=> \(2x-10+2\sqrt{\left(x-3\right)^2}=0\)
<=> \(2\left|x-3\right|=10-2x\)
<=> \(\left|x-3\right|=5-x\Leftrightarrow\orbr{\begin{cases}x-3=5-x\\x-3=x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=8\\0x=-2\left(∄x\right)\end{cases}\Rightarrow}x=4\)
Thiên Thư mk cx hk lp 7 nek
a\ \(\sqrt{x^2-4x+4}=6\)
\(x^2-4x+4=6^2=36\)
\(x\left(x-4\right)=32\)
ta có \(32=8.4=\left(-8\right)\left(-4\right)\)
\(\Rightarrow x\in\left\{8;-4\right\}\)
b)\(\sqrt{2x+5}=2x-1\)
\(2x+4=4x^2-4x\)
\(2\left(x+2\right)=4x\left(4x-1\right)\)
\(........................\)
e bí mất r a ạ
<=> \(\sqrt{\left(x+1\right)^2+4}\)+\(\sqrt{\left(x\sqrt{2}+\sqrt{2}\right)^2+4}\)= 4
NX: \(\left(x+1\right)^2+4\ge4\)với mọi x
\(\left(x\sqrt{2}+\sqrt{2}\right)^2+4\ge4\)với mọi x
=>\(\sqrt{\left(x+1\right)^2+4}\)\(\ge\)2 với mọi x
\(\sqrt{\left(x\sqrt{2}+\sqrt{2}\right)^2+4}\)\(\ge\)2 với mọi x
=>VT=VP <=> Dấu = xảy ra
bạn tự làm tiếp nhé:))
điều kiện 2x-5+3 >=0 và 2x-5-1>=0
<=>x>=1 và x>=3
=> x>=1
từ pt đã cho ta có
căn 2x-5+6(2x-5)+9 + căn 2x-5-2(2x-5)+1 = 4
<=>(2x-5+3)+(2x-5-1)=4
<=>4x-8=4
<=> 4x=12
<=>x=3(TMDKXD)
vậy x=3
\(ĐKXĐ:x\ge\frac{5}{2}\)
Ta có: \(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|=4\)(1)
Có : \(VT\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{2x-5}+3\ge0\\1-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow-3\le\sqrt{2x-5}\le1}\)
\(\Leftrightarrow0\le2x-5\le1\)
\(\Leftrightarrow5\le2x\le6\)
\(\Leftrightarrow\frac{5}{2}\le x\le3\)
KẾt hợp với ĐKXĐ được \(\frac{5}{2}\le x\le3\)
Vậy pt có nghiệm nằm trong khoảng \(\frac{5}{2}\le x\le3\)