\(\sqrt{2x-1}=18-13x+2x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

về hỏi cô giáo ấy

18 tháng 8 2020

Đặt \(a=\sqrt{2x^2+16x+18};b=\sqrt{x^2-1}\left(a,b\ge0\right);\)

Ta có: \(a+b=\sqrt{a^2+2b^2}\Rightarrow a^2+2ab+b^2=a^2+2b^2\)

\(\Leftrightarrow b\left(2a-b\right)=0\)

TH1: \(\sqrt{x^2-1}=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}\left(TM\right)}\)

TH2: \(2\sqrt{2x^2+16x+18}=\sqrt{x^2-1}\Leftrightarrow7x^2+64x+72=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-32+3\sqrt{57}}{7}\left(TM\right)\\x=\frac{-32-3\sqrt{57}}{7}\left(KTM\right)\end{cases}}\)

4 tháng 7 2017

b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)

\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)

\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)

\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)

Pt trong ngoặc VN suy ra x=2

4 tháng 7 2017

a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)

\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)

\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)

pt trong căn vô nghiệm

suy ra x=1; x=-1