
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)
Pt\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=\left(x-3\right)^2\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-4=x^2-6x+9\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+13=0\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{29}}{2}\\x_2=\dfrac{9-\sqrt{29}}{2}\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{9+\sqrt{29}}{2}\)
Vậy \(x=\dfrac{9+\sqrt{29}}{2}\) là nghiệm của phương trình.
b) Pt \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+3=\left(2x-1\right)^2\\2x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-2=0\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{7}}{3}\\x_2=\dfrac{1-\sqrt{7}}{3}\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{7}}{3}\)
Vậy phương trình có duy nhất nghiệm là: \(x=\dfrac{1+\sqrt{7}}{3}\)



a) \(\sqrt{5x+3}=3x-7\)\(\Leftrightarrow\left\{{}\begin{matrix}5x+3=\left(3x-7\right)^2\\3x-7\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x+3=9x^2-42x+49\\x\ge\dfrac{7}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}9x^2-47x+46=0\\x\ge\dfrac{7}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{47+\sqrt{553}}{18}\\x=\dfrac{47-\sqrt{553}}{18}\end{matrix}\right.\\x\ge\dfrac{7}{3}\end{matrix}\right.\)\(\Leftrightarrow\dfrac{47+\sqrt{553}}{18}\).
b) \(\sqrt{3x^2-2x-1}=3x+1\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-1=\left(3x+1\right)^2\\3x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x^2+8x+2=0\\x\ge\dfrac{-1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-1\end{matrix}\right.\\x\ge-\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow x=-\dfrac{1}{3}\).

ĐKXĐ: x – 6 ≥ 0 ⇔ x > 6. Bình phương hai vế thì được 5x + 6 = (x – 6)2 ⇔ x2 = 2 (loại), x2 = 15 (nhận).
b) ĐKXĐ: – 2 ≤ x ≤ 3. Bình phương hai vế thì được 3 - x = x + 3 + 2
⇔ -2x = 2.
Điều kiện x ≤ 0. Bình phương tiếp ta được:
x2 = x + 2 => x1 = -1 (nhận); x2 = 2 (loại).
Kết luận: Tập nghiệm S {-1}.
c) ĐKXĐ: x ≥ -2.
=> 2x2 + 5 = (x + 2)2 => x2 - 4x + 1 = 0
=> x1 =2 – (nhận), x2 = 2 +
(nhận).
d) ĐK: x ≥ .
=> 4x2 + 2x + 10 = (3x + 1)2 => x1 = (loại), x2 = 1 (nhận).

1/ \(3x^2+4x-3=4x\sqrt{4x-3}\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{4x-3}+4x-3\right)-x^2=0\)
\(\Leftrightarrow\left(2x-\sqrt{4x-3}\right)^2-x^2=0\)
\(\Leftrightarrow\left(3x-\sqrt{4x-3}\right)\left(x-\sqrt{4x-3}\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}3x=\sqrt{4x-3}\\x=\sqrt{4x-3}\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=1\\x=3\end{matrix}\right.\)
3.\(pt\Leftrightarrow\sqrt{3x+8}-\sqrt{3x+5}=\sqrt{5x-4}-\sqrt{5x-7}\)
\(\Leftrightarrow\frac{3x+8-5x+4}{\sqrt{3x+8}+\sqrt{5x+4}}-\frac{3x+5-5x+7}{\sqrt{3x+5}+\sqrt{5x+7}}=0\)
\(\Leftrightarrow\left(12-2x\right)\left(\frac{1}{\sqrt{3x+8}+\sqrt{5x+4}}+\frac{1}{\sqrt{3x+5}+\sqrt{5x+7}}\right)=0\)
\(\Rightarrow x=6\)
Answer:
\(\sqrt{1-x^2}=4x^3-3x\left(ĐK:-1\le x\le1\right)\)
\(\Leftrightarrow\sqrt{1-x^2}=4x\left(x^2-1\right)\)
\(\Leftrightarrow\sqrt{1-x^2}+\left(1-x^2\right).4x=0\)
\(\Leftrightarrow\sqrt{1-x^2}=0\)
\(\Leftrightarrow1-x^2=0\)
Trường hợp 1: \(x=1\) (Loại)
Trường hợp 2: \(x=-1\) (Loại)
Trường hợp 3: \(x=0\) (Thoả mãn)