K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2016

a, \(\sqrt{\left(x-1\right)^2}=5\Rightarrow\left(x-1\right)=\left\{5;-5\right\}\Leftrightarrow\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)

b,\(3+\sqrt{x}=5\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

c,\(\sqrt{x^2-2x+1}=x-1\Rightarrow\sqrt{\left(x-1\right)^2}=x-1\Rightarrow x-1=\left\{x-1;-\left(x-1\right)\right\}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=x-1\Rightarrow x\in R\\x-1=-\left(x-1\right)\Rightarrow x-1=-x+1\Rightarrow x+x=1+1\Rightarrow2x=2\Rightarrow x=1\end{cases}}\)

Vậy x = 1

d, \(\sqrt{x^2-10x+25}=x+3\Rightarrow\sqrt{\left(x-5\right)^2}=x+3\Rightarrow x-5=\left\{x+3;-\left(x+3\right)\right\}\)

\(\Leftrightarrow\hept{\begin{cases}x-5=x+3\Rightarrow x-x=3+5\Rightarrow0x=8\left(loai\right)\\x-5=-\left(x+3\right)\Rightarrow x-5=-x-3\Rightarrow x+x=-3+5\Rightarrow2x=2\Rightarrow x=1\left(chon\right)\end{cases}}\)

Vậy x = 1

7 tháng 9 2016

a,\(\sqrt{x^2}=5\Rightarrow x=5\)

b,\(\sqrt{x}+5=7\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

f,\(\frac{\sqrt{x-5}}{\sqrt{x-4}}=1\Rightarrow\sqrt{x-5}=\sqrt{x-4}\Rightarrow\left(\sqrt{x-5}\right)^2=\left(\sqrt{x-4}\right)^2\Rightarrow x-5=x-4\)

\(\Rightarrow x-x=5-4\Rightarrow0x=1\)(vô lý)  => x không tồn tại

14 tháng 8 2017

I) xd mọi x

\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)

\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)

\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)

kết luận

\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)

4 tháng 8 2019

Nhiều vậy sao giải @@

a) Đặt \(a=\sqrt{1+x}+\sqrt{8-x}\)

\(\Leftrightarrow a^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Leftrightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Leftrightarrow\frac{a^2-9}{2}=\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(pt\Leftrightarrow a+\frac{a^2-9}{2}=3\)

\(\Leftrightarrow\frac{a^2+2a-9}{2}=3\)

\(\Leftrightarrow a^2+2a-9=6\)

\(\Leftrightarrow a^2+2a-15=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-5\end{matrix}\right.\)

Tới đây thay vào rồi tìm x

b) \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)

\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\)

Ta có : \(a^2+b^2=x^2-x+1+x+1=x^2+2\)

\(pt\Leftrightarrow2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow2a^2-4ab+2b^2-ab=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\)

Tới đây thay vào rồi lại giải tiếp

p/s: Mình bận rồi, bao giờ rảnh giải tiếp

AH
Akai Haruma
Giáo viên
14 tháng 7 2019

Câu 1:

ĐKXĐ: $3\geq x\geq -2$

PT \(\sqrt{x+2}-2-(\sqrt{3-x}-1)=x^2-6x+8\)

\(\Leftrightarrow \frac{x-2}{\sqrt{x+2}+2}-\frac{2-x}{\sqrt{3-x}+1}=(x-2)(x-4)\) (liên hợp)

\(\Leftrightarrow (x-2)\left[\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4\right]=0\)

Ta thấy với mọi $3\geq x\geq -2$ thì:

\(\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}>0\)

\(-x+4>0\)

\(\Rightarrow \frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4>0\)

\(\Rightarrow \frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4\neq 0\)

Do đó $x-2=0$ hay PT có nghiệm duy nhất $x=2$ (t/m)

15 tháng 7 2019

Em thử thôi nha! Ko chắc...

2)Nhận xét x = 1 là một nghiệm. Xét x khác 1, khi đó

ĐK: \(x>1\)

PT \(\Leftrightarrow\left(\sqrt{x}-1\right)-\sqrt{x-1}=\left(\sqrt{x+8}-3\right)-\left(\sqrt{x+3}-2\right)\) (bớt 1 ở mỗi vế)

\(\Leftrightarrow\frac{x-1}{\sqrt{x}+1}-\frac{x-1}{\sqrt{x-1}}=\frac{x-1}{\sqrt{x+8}+3}-\frac{x-1}{\sqrt{x+3}+2}\)

\(\Leftrightarrow\left(x-1\right)\left[\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right)-\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+8}+3}\right)\right]=0\)

Vì x > 1 nên x - 1 khác 0 suy ra \(\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right)-\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+8}+3}\right)=0\) (1)

Dễ thấy vế trái của pt (1) < 0 với mọi x > 1 (em ko biết lí luận thế nào nữa...)

Do đó với x > 1 thì pt vô nghiệm.

Vậy pt có nghiệm duy nhất x = 1

NV
10 tháng 8 2020

6.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2\end{matrix}\right.\)

NV
10 tháng 8 2020

4.

ĐKXĐ: \(x\ge4\)

Đặt \(\sqrt{x-4}=t\ge0\Rightarrow x=t^2+4\)

\(\Rightarrow3\left(t^2+4\right)+7t=14t-20\)

\(\Leftrightarrow3t^2-7t+34=0\)

Phương trình vô nghiệm

5.

ĐKXĐ: ...

- Với \(x=0\) ko phải nghiệm

- Với \(x\ne0\Rightarrow\sqrt{x+1}-1\ne0\) , nhân 2 vế của pt cho \(\sqrt{x+1}-1\) và rút gọn ta được:

\(\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)

\(\Leftrightarrow2x=4\Rightarrow x=2\)

20 tháng 8 2018

a , Ta có :

\(\Leftrightarrow\sqrt{7-x}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\7-x=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy pt có nghiệm là x = 3

b , c , d , e , f tương tự

NV
14 tháng 7 2020

f/

ĐKXĐ: ...

Đặt \(\sqrt{2-x}+\sqrt{x+2}=a>0\)

\(\Rightarrow a^2=4+2\sqrt{4-x^2}\Rightarrow\sqrt{4-x^2}=\frac{a^2-4}{2}\)

Phương trình trở thành:

\(a+\frac{a^2-4}{2}=2\)

\(\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{4-x^2}=\frac{a^2-4}{2}=0\)

\(\Rightarrow4-x^2=0\Rightarrow x=\pm2\)

NV
14 tháng 7 2020

e/ ĐKXĐ: ...

Đặt \(\sqrt{x+1}+\sqrt{4-x}=a>0\)

\(\Rightarrow a^2=5+2\sqrt{\left(x+1\right)\left(4-x\right)}\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{a^2-5}{2}\)

Pt trở thành:

\(a+\frac{a^2-5}{2}=5\)

\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}+\sqrt{4-x}=3\)

\(\Leftrightarrow5+2\sqrt{\left(x+1\right)\left(4-x\right)}=9\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=2\)

\(\Leftrightarrow\left(x+1\right)\left(4-x\right)=4\)

\(\Leftrightarrow-x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ