\(\left[x-5\right]^{2013}+\left[x-6\right]^{2014}=1\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

a, \(\Leftrightarrow\left(x+1+x-2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-2\right)+\left(x-2\right)^2\right]-\left(2x-1\right)^3=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x+1-x^2+x+2+x^2-4x+4\right)-\left(2x-1\right)^3=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-\left(2x-1\right)^2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-4x^2+4x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(-3x^2+3x+6\right)=0\)

\(\Leftrightarrow-3\left(2x-1\right)\left(x^2-x-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)\left(x-2\right)=0\)

=>x=1/2 hoặc x=-1 hoặc x=2

Vậy pt có tập nghiệm là S={1/2;-1;2}

b, \(x^4=24x+32\Leftrightarrow x^4-24x-32=0\)

\(\Leftrightarrow x^4-2x^3-4x^2+2x^3-4x^2-8x+8x^2-16x-32=0\)

\(\Leftrightarrow x^2\left(x^2-2x-4\right)+2x\left(x^2-2x-4\right)+8\left(x^2-2x-4\right)=0\)

\(\Leftrightarrow\left(x^2-2x-4\right)\left(x^2+2x+8\right)=0\)

\(\Leftrightarrow x^2-2x-4=0\) (vì x^2+2x+8 > 0)

\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x-1=\pm\sqrt{5}\Leftrightarrow x=1\pm\sqrt{5}\)

Vậy...

c, \(\left(x-6\right)^4+\left(x-8\right)^4=16\)

Đặt x-6=t => x-8=t-2

Ta có: \(t^4+\left(t-2\right)^4=16\Leftrightarrow t^4+t^4-8t^3+24t^2-32t+16=16\)

\(\Leftrightarrow2t^4-8t^3+24t^2-32t=0\Leftrightarrow t^4-4t^3+12t^2-16t=0\)

\(\Leftrightarrow t^4-2t^3-2t^3+4t^2+8t^2-16t=0\)

\(\Leftrightarrow t^3\left(t-2\right)-2t^2\left(t-2\right)+8t\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t^3-2t^2+8t\right)=0\Leftrightarrow\left(t-2\right)t\left(t^2-2t+8\right)=0\)

Mà t^2-2t+8=(t-1)^2+7 > 0

\(\Rightarrow\orbr{\begin{cases}t-2=0\\t=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-6-2=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=8\\x=6\end{cases}}}\)

Vậy...

9 tháng 3 2019

\(\left(x+5\right)+\left(x-5\right)+5x+x\div5=180\)

\(\Leftrightarrow\left(x+x+5x\right)+\left(5-5\right)+\frac{x}{5}=180\)

\(\Leftrightarrow7x+0+\frac{x}{5}=180\)

\(\Leftrightarrow7x+\frac{x}{5}=180\)

\(\Leftrightarrow\frac{35x+x}{5}=180\)

\(\Leftrightarrow35x+x=180.5\)

\(\Leftrightarrow36x=900\)

\(\Leftrightarrow x=\frac{900}{36}\)

\(\Leftrightarrow x=25\)

Vậy phương trình có 1 nghiệm duy nhất là 25

9 tháng 3 2019

(x + 5) + (x - 5) + 5x + \(\frac{x}{5}\)= 180

<=> x + 5 + x - 5 + 5x + \(\frac{x}{5}\) = 180

<=> 7x + \(\frac{x}{5}\) = 180

<=> \(\frac{36x}{5}=180\)

\(\Leftrightarrow x=\frac{180.5}{36}=25\)

11 tháng 5 2018

5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6

\(\Leftrightarrow\) 5x-2x>6+2

\(\Leftrightarrow\)3x>8

\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)

0 8/3

Chúc bn học tốt❤

28 tháng 1 2020

\(ĐKXĐ:x\ne-1;x\ne2\)

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5x+5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow x-2-5x-5=15\)

\(\Leftrightarrow-4x=22\Leftrightarrow x=\frac{-11}{2}\)

Vậy \(S=\left\{\frac{-11}{2}\right\}\)

28 tháng 1 2020

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\left(ĐKXĐ:x\ne-1;x\ne2\right)\)

\(\Leftrightarrow\frac{1\left(x-2\right)-5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{-4x-7}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow-4x-7=15\)

\(\Leftrightarrow-4x=22\)

\(\Leftrightarrow x=22:\left(-4\right)\)

\(\Leftrightarrow x=\frac{-22}{4}=\frac{-11}{2}\)

Vậy tập nghiệm \(S=\left\{\frac{-11}{2}\right\}\)

25 tháng 2 2019

\(a,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)  ĐKXĐ : \(x\ne0;x\ne\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)

\(\Leftrightarrow x-3=10x-15\)

\(\Leftrightarrow x-10x=3-15\)

\(\Leftrightarrow-9x=-12\)

\(\Leftrightarrow x=\frac{-12}{-9}=\frac{4}{3}\)(TMĐKXĐ)

KL :....

25 tháng 2 2019

\(b,\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)   ĐKXĐ : \(x\ne0;2\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-x+2=2\)

\(\Leftrightarrow x^2+x=2-2\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

KL ::

1 tháng 4 2017

\(4\left(x^2+4x\right)^2+31\left(x^2+4x\right)+60=3\)

\(t=x^2+4x\)

\(4t^2+31t+57=0\)

\(\orbr{\begin{cases}t=\frac{-31-7}{8}=\frac{-19}{4}\\t=\frac{-31+7}{8}=-3\end{cases}}\)

\(x^2+4x+\frac{19}{4}=0\Rightarrow vn\)

\(x^2+4x+3=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)

2 tháng 4 2017

Bạn còn cách nào dễ hiểu hơn ko?