Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+5\right)+\left(x-5\right)+5x+x\div5=180\)
\(\Leftrightarrow\left(x+x+5x\right)+\left(5-5\right)+\frac{x}{5}=180\)
\(\Leftrightarrow7x+0+\frac{x}{5}=180\)
\(\Leftrightarrow7x+\frac{x}{5}=180\)
\(\Leftrightarrow\frac{35x+x}{5}=180\)
\(\Leftrightarrow35x+x=180.5\)
\(\Leftrightarrow36x=900\)
\(\Leftrightarrow x=\frac{900}{36}\)
\(\Leftrightarrow x=25\)
Vậy phương trình có 1 nghiệm duy nhất là 25
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
=1/x-1/x+2014
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}=\dfrac{2014}{x\left(x+2014\right)}\)
\(ĐKXĐ:x\ne-1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5x+5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x-2-5x-5=15\)
\(\Leftrightarrow-4x=22\Leftrightarrow x=\frac{-11}{2}\)
Vậy \(S=\left\{\frac{-11}{2}\right\}\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\left(ĐKXĐ:x\ne-1;x\ne2\right)\)
\(\Leftrightarrow\frac{1\left(x-2\right)-5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{-4x-7}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow-4x-7=15\)
\(\Leftrightarrow-4x=22\)
\(\Leftrightarrow x=22:\left(-4\right)\)
\(\Leftrightarrow x=\frac{-22}{4}=\frac{-11}{2}\)
Vậy tập nghiệm \(S=\left\{\frac{-11}{2}\right\}\)
a, \(\Leftrightarrow\left(x+1+x-2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-2\right)+\left(x-2\right)^2\right]-\left(2x-1\right)^3=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x+1-x^2+x+2+x^2-4x+4\right)-\left(2x-1\right)^3=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-\left(2x-1\right)^2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-4x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(-3x^2+3x+6\right)=0\)
\(\Leftrightarrow-3\left(2x-1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)\left(x-2\right)=0\)
=>x=1/2 hoặc x=-1 hoặc x=2
Vậy pt có tập nghiệm là S={1/2;-1;2}
b, \(x^4=24x+32\Leftrightarrow x^4-24x-32=0\)
\(\Leftrightarrow x^4-2x^3-4x^2+2x^3-4x^2-8x+8x^2-16x-32=0\)
\(\Leftrightarrow x^2\left(x^2-2x-4\right)+2x\left(x^2-2x-4\right)+8\left(x^2-2x-4\right)=0\)
\(\Leftrightarrow\left(x^2-2x-4\right)\left(x^2+2x+8\right)=0\)
\(\Leftrightarrow x^2-2x-4=0\) (vì x^2+2x+8 > 0)
\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x-1=\pm\sqrt{5}\Leftrightarrow x=1\pm\sqrt{5}\)
Vậy...
c, \(\left(x-6\right)^4+\left(x-8\right)^4=16\)
Đặt x-6=t => x-8=t-2
Ta có: \(t^4+\left(t-2\right)^4=16\Leftrightarrow t^4+t^4-8t^3+24t^2-32t+16=16\)
\(\Leftrightarrow2t^4-8t^3+24t^2-32t=0\Leftrightarrow t^4-4t^3+12t^2-16t=0\)
\(\Leftrightarrow t^4-2t^3-2t^3+4t^2+8t^2-16t=0\)
\(\Leftrightarrow t^3\left(t-2\right)-2t^2\left(t-2\right)+8t\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^3-2t^2+8t\right)=0\Leftrightarrow\left(t-2\right)t\left(t^2-2t+8\right)=0\)
Mà t^2-2t+8=(t-1)^2+7 > 0
\(\Rightarrow\orbr{\begin{cases}t-2=0\\t=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-6-2=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=8\\x=6\end{cases}}}\)
Vậy...
\(-2=\frac{2}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{2}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{2}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{2}{\left(x^2+2\right)\left(x^2+1\right)}\)
<=>\(\frac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
<=>\(\frac{1}{x^2+1}-\frac{1}{x^2+2}+\frac{1}{x^2+2}-\frac{1}{x^2+3}+...+\frac{1}{x^2+4}-\frac{1}{x^2+5}=-1\)
<=>\(\frac{1}{x^2+1}-\frac{1}{x^2+5}=-1\)
<=>(x2+5)-(x2+1)=-(x2+1)(x2+5)
<=>4=-x4-6x2-5
<=>x4+6x2+9=0
<=>(x2+3)2=0
<=>x2+3=0
Do x2>0
=>x2+3>0 nên PT vô nghiệm
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)tương tự những cái kia rồi triệt tiêu còn phân thức đầu vs cuối
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(\Rightarrow A=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
\(\Rightarrow A=\dfrac{1}{x}-\dfrac{1}{x+2014}\)
\(\Rightarrow A=\dfrac{2014}{x\left(x+2014\right)}\)
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+....+\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\dfrac{1}{x}+\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+2014}-\dfrac{x+2014}{x\left(x+2014\right)}-\dfrac{x}{x\left(x+2014\right)}\)
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}\)
\(=\dfrac{2014}{x\left(x+2014\right)}\)