Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a); b) Do tích = 0
=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)
=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)
a; *x-1=0 <=>x=1
*2x+5=0 <=>x=-2,5
*x2+2=0 <=> ko có x
b; tương tự a
I don't now
...............
.................
a) (x + 2)(x + 3) - (x - 2)(x + 5) = 6
x2 + 3x + 2x + 6 - (x2 + 5x - 2x - 10) = 6
x2 + 5x + 6 - x2 - 3x + 10 = 6
2x +16 = 6
\(\Rightarrow\) 2x = -10
\(\Rightarrow\) x = -5
b) (3x + 2)(2x + 9) - (x + 2)(6x + 1) = (x + 1) - (x - 6)
6x2 + 27x + 4x + 18 - (6x2 + x + 12x + 2) = x + 1 - x + 6
6x2 + 31x + 18 - 6x2 - 13x - 2 = 7
18x + 16 = 7
\(\Rightarrow\) 18x = -9
\(\Rightarrow\) x = -0.5
c) 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) = 0
3(6x2 - 2x - 3x + 1) - (18x2 - 2x - 27x + 3) = 0
3(6x2 - 5x + 1) - (18x2 - 29x + 3) = 0
18x2 - 15x + 3 - 18x2 + 29x - 3 = 0
14x = 0
\(\Rightarrow\) x = 0
Bài 1:
a)(4x-3)(3x+2)-(6x+1)(2x-5)+1
=12x2-x-6-12x2+28x+5+1
=27x
b)(3x+4)2+(4x-1)2+(2+5x)(2-5x)
=9x2+24x+16+16x2-8x+1+4-25x2
=16x+21
c)(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)-9
=8x3+1+8-27x3-9
=-19x3
Bài 2:
a)3x(x-4)-x(5+3x)=-34
=>3x2-12x-3x2-5x=-34
=>-17x=-34
=>x=2
Vậy x=2
b)(3x+1)2+(5x-2)2=34(x+2)(x-2)
=>9x2+6x+1+25x2-20x+4=34(x2-4)
=>34x2-14x+5-34x2+136=0
=>-14x+141=0
=>-14x=-141
=>x=\(\frac{141}{14}\)
Vậy x=\(\frac{141}{14}\)
c)x3+3x2+3x+28=0
=>x3-x2+7x+4x2-4x+28=0
=>x(x2-x+7)+4(x2-x+7)=0
=>(x+4)(x2-x+7)=0
\(\Rightarrow\left[\begin{array}{nghiempt}x+4=0\\x^2-x+7=0\left(2\right)\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-4\\\left(2\right)\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}>0\end{array}\right.\)
=>(2) vô nghiệm
Vậy x=-4
a) (3x+2)(2x+9) - (x+2)(6x+1) = (x+1) - (x-6)
<=> 6x2 + 27x + 4x + 18 - 6x2 - x - 12x - 2 = x+1 - x+6
<=> 18x + 16 = 7
<=> 18x = -9
<=> x = \(-\dfrac{1}{2}\)
b) 3(2x-1)(3x-1) - (2x-3)(9x-1) = 0
<=> 3.(6x2-2x-3x+1) - (18x2-2x-27x+3) = 0
<=> 3.(6x2-5x+1) - 18x2+29x-3 = 0
<=> 18x2-15x+3 - 18x2+29x - 3 = 0
<=> 14x = 0
<=> x = 0
a) \(\left(3x-5\right)\left(9x^2+15x+25\right)\)
\(=\left(3x\right)^3-5^3\)
\(=27x^3-125\)
b) \(\left(2x+7\right)\left(x^2-14x+49\right)-2x\left(2x-1\right)\left(2x+1\right)\)
\(=2x^3-28x^2+98x+7x^2-98x+343-2x\left(4x^2-1\right)\)
\(=2x^3-28x^2+7x^2+343-8x^3+2x\)
\(=-6x^3-21x^2+343+2x\)
c) \(\left(4x-7\right)\left(16x^2+28x+49\right)\left(3x+1\right)\left(9x^2-3x+1\right)-9x\left(3x^2-1\right)\)
\(=\left(64x^3-343\right)\left(3x+1\right)\left(9x^2-3x+1\right)-27x^3+9x\)
\(=\left(6x^3-343\right)\left(27x^3+1\right)-27x^3+9x\)
\(=1728x^6+64x^3-9261x^3-343-27x^3+9x\)
\(=1728x^6-9224x^3-343+9x\)
\(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-2\end{cases}}\)
\(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=\frac{-4}{5}\end{cases}}\)