Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left|x-1+\left(x-2y\right)^2+\left(y-3z\right)^2\right|=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\)
Để cho gọn, đặt \(\left(x-2y\right)^2+\left(y-3z\right)^2=a\ge0\)
\(\Rightarrow\left|x-1+a\right|=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\)
- Nếu \(x-1>0\Rightarrow VT=\left|x-1+a\right|>x-1\)
Mà \(\left|\left(x-1\right)\left(2-x\right)\right|\ge0\Rightarrow VP=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\le x-1\)
\(\Rightarrow VT>VP\Rightarrow\) pt vô nghiệm
- Nếu \(x-1< 0\Rightarrow VT=\left|x-1+a\right|\ge0\)
\(VP=x-1-\left|\left(x-1\right)\left(2-x\right)\right|< 0\) do \(\left\{{}\begin{matrix}x-1< 0\\\left|\left(x-1\right)\left(2-x\right)\right|\ge0\end{matrix}\right.\)
\(\Rightarrow VT>VP\Rightarrow\) pt vô nghiệm
Vậy \(x=1\), khi đó pt trở thành:
\(\left|\left(1-2y\right)^2+\left(y-3z\right)^2\right|=0\Leftrightarrow\left\{{}\begin{matrix}1-2y=0\\y-3z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\z=\dfrac{1}{6}\end{matrix}\right.\)
Vậy pt đã cho có bộ nghiệm duy nhất \(\left(x;y;z\right)=\left(1;\dfrac{1}{2};\dfrac{1}{6}\right)\)
Biện luận thiếu 1 chút rồi, ở dòng 4 có dấu "=", nên sửa từ dòng 4 đến dòng 6 bằng đoạn này:
\(x-1>0\Rightarrow VT=\left|x-1+a\right|\ge x-1\)
\(VP=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\le x-1\)
\(\Rightarrow VT\ge VP\), dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x>1\\a=0\\\left(x-1\right)\left(2-x\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left(x-2y\right)^2=0\\\left(y-3z\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\\z=\dfrac{1}{3}\end{matrix}\right.\)
c) Đặt \(a=\sqrt{x-4},b=\sqrt{y-4}\)với \(a,b\ge0\)thì pt đã cho trở thành:
\(2\left(a^2+4\right)b+2\left(b^2+4\right)a=\left(a^2+4\right)\left(b^2+4\right)\). chia 2 vế cho \(\left(a^2+4\right)\left(b^2+4\right)\)thì pt trở thành :
\(\frac{2b}{b^2+4}+\frac{2a}{a^2+4}=1\). Để ý rằng a=0 hoặc b=0 không thỏa mãn pt.
Xét \(a,b>0\). Theo BĐT AM-GM ta có: \(b^2+4\ge2\sqrt{4b^2}=4b,a^2+4\ge4a\)
\(\Rightarrow VT\le\frac{2a}{4a}+\frac{2b}{4b}=1\), dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a^2=4\\b^2=4\end{cases}\Leftrightarrow a=b=2\Leftrightarrow x=y=8}\)
Vậy x=8,y=8 là nghiệm của pt
mk làm 1 câu các câu còn lại tương tự nha :
a) ta có : \(pt\Leftrightarrow x^2-6x+9=-y^2-10y+33\)
\(\Leftrightarrow\left(x-3\right)^2=-y^2-10y+33\ge0\)
\(\Leftrightarrow-5-\sqrt{58}\le y\le-5+\sqrt{58}\) \(\Rightarrow x\in\left\{-12;-11;-10;...;1;2\right\}\) có y thế vào tìm x
\(x^2-4xy+5y^2=2\left(x-y\right)\)
\(\Leftrightarrow x^2-4xy+5y^2-2x+2y=0\)
\(\Leftrightarrow\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)
\(\Leftrightarrow\left(x-2y-1\right)^2+\left(y-1\right)^2=2\)
Vì x,y là số nguyên nên ta có các trường hợp:
TH1: \(\hept{\begin{cases}x-2y-1=1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=2\end{cases}}\)
TH2: \(\hept{\begin{cases}x-2y-1=-1\\y-1=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
TH3: \(\hept{\begin{cases}x-2y-1=-1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=2\end{cases}}\)
TH4: \(\hept{\begin{cases}x-2y-1=1\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy \(\left(x;y\right)\in\left\{\left(6;2\right),\left(0;0\right),\left(4;2\right),\left(2;0\right)\right\}\)
\(\)
Lời giải:
Lấy PT(1) trừ PT(2) ta thu được:
\(|y-3|+5y=8-1=7\)
\(\Leftrightarrow |y-3|=7-5y\)
\(\Rightarrow \left\{\begin{matrix} 7-5y\geq 0\\ \left[\begin{matrix} y-3=7-5y\\ y-3=5y-7\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y\leq \frac{7}{5}\\ \left[\begin{matrix} y=\frac{5}{3}\\ y=1\end{matrix}\right.\end{matrix}\right.\Rightarrow y=1\)
Thay vào PT(2) suy ra:
\(|x+2|=5y+1=5.1+1=6\)
\(\Rightarrow \left[\begin{matrix} x+2=6\\ x+2=-6\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=4\\ x=-8\end{matrix}\right.\)
Vậy \((x,y)\in\left\{(4,1); (-8,1)\right\}\)
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
\(\Leftrightarrow x^3+\left(xy\right)^2+xy+y^3=x^3-xy\left(x-y\right)+y^3\)
\(\Leftrightarrow xy\left(xy+1\right)=xy\left(y-x\right)\)
Xét hai TH:
+ TH1: xy = 0: Khi đó \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\).
+ TH2: xy \(\ne\) 0: Ta được xy + 1 = y - x
\(\Leftrightarrow xy+x-y+1=0\)
\(\Leftrightarrow x\left(y+1\right)-y-1+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=-2\). Ở đây dễ rồi
a) ta có : \(x^2+x+6=y^2\) \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=y^2-\dfrac{23}{4}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}y\ge\dfrac{\sqrt{23}}{2}\\y\le\dfrac{-\sqrt{23}}{2}\end{matrix}\right.\) \(\Rightarrow\) \(y=???\) thế vào tìm x
b) tương tự
c) \(x^3-y^3=3xy+1\Leftrightarrow x^3-1=y^3+3xy\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=y\left(y^2+3x\right)\)
\(\Leftrightarrow x-1\) và \(y\left(y^2+3x\right)\) cùng dấu \(\Rightarrow\) ...
d) ai gỏi lm giùm nha