Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì $3x^2-x+1>0,x^2+1>0$
$\to \begin{cases}x^2 \geq 4\x<-1\\\end{cases}$
$\to \begin{cases}\left[ \begin{array}{l}x \geq 2\\x \leq -2\end{array} \right.\\x<-1\\\end{cases}$
$\to x \leq -2$
Vậy tập xác định của phương trình là `(-oo,-2]`
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne7\end{matrix}\right.\)
\(\dfrac{2\left(x-4\right)}{\left(x-1\right)\left(x-7\right)}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\dfrac{2x-8}{x^2-8x+7}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\left(2x-8\right)\left(x-2\right)\ge x^2-8x+7\)
\(\Leftrightarrow2x^2-12x+16\ge x^2-8x+7\\ \Leftrightarrow x^2-4x+9\ge0\left(luôn.đúng\right)\)
Có lẽ đây là 1 đề bài ko chính xác
- Với \(\left[{}\begin{matrix}x\le-1\\x\ge4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}VP>0\\VT\le0\end{matrix}\right.\) BPT luôn đúng
- Với \(-1< x< 4\)
\(VT\le\dfrac{1}{4}\left(x+1+4-x\right)^2=\dfrac{25}{4}\)
\(VP=5\sqrt{\left(x+\dfrac{5}{2}\right)^2+\dfrac{87}{4}}\ge5.\sqrt{\dfrac{87}{4}}>\dfrac{25}{4}>VT\)
Vậy BPT luôn đúng hay tập nghiệm của BPT đã cho là R
Lời giải:
ĐK: $x\neq -5; n\neq 0$
\(\frac{(2x+1)^4(x-3)^3}{(x+5)^2x^5}\leq 0\Leftrightarrow \left[\frac{(2x+1)^2(x-3)}{(x+5)x^2}\right]^2.\frac{x-3}{x}\leq 0\)
\(\Leftrightarrow \frac{x-3}{x}\leq 0\Rightarrow \left[\begin{matrix} x-3\geq 0; x< 0\\ x-3\leq 0; x>0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 0> x\geq 3(\text{vô lý})\\ 3\geq x>0\end{matrix}\right.\)
Vậy $3\geq x>0$
Gõ đề có sai không ạ?
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)
Cộng theo vế HPT2
\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)
\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)
Có:
\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)
\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)
\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)
|x+1|+|x−1|=4
=>x+1+x-1=4
=>2x=4
=>x=2
Đề của bn có đúng k z
Chúc bạn học tốt