Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>xy-2x=xy-4x+2y-8 và 2xy+7x-6y-21=2xy+6x-7y-21
=>2x-2y=-8 và x+y=0
=>x-y=-4 và x+y=0
=>2x=-4 và x+y=0
=>x=-2 và y=2
a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)
Vậy x = 8 hoặc x = -7
a: Ta có: \(x^4-x^2-56=0\)
\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)
\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)
\(\Leftrightarrow x^2-8=0\)
hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
\(\left(x-2\right)\left(x-1\right)\left(x-4\right)\left(x-8\right)=4x^2\)
\(\Leftrightarrow[\left(x-2\right)\left(x-4\right)][\left(x-1\right)\left(x-8\right)]=4x^2\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-9x+8\right)=4x^2\)
thấy \(x=0;2\) không phải nghiệm của phương trình nên ta chia hai vế của pt cho \(x^2\) ta được \(:\)
\(\Leftrightarrow\left(x+\dfrac{8}{x}-9\right)\left(x+\dfrac{8}{x}-6\right)=4\)
\(Đặt:\) \(x+\dfrac{8}{x}=a\) thì pt trở thành \(:\)
\(\left(a-6\right)\left(a-9\right)=4\)
\(\Leftrightarrow a^2-15a+50=0\)
\(\Leftrightarrow\left(a-5\right)\left(a-10\right)=0\Leftrightarrow\left\{{}\begin{matrix}a=5\\a=10\end{matrix}\right.\)
\(Với\) \(a=5\) thì \(x+\dfrac{8}{x}=5\Leftrightarrow x^2-5x+8=0\left(vônghiem\right)\)
\(Với\) \(a=10\) thì \(x+\dfrac{8}{x}=10\Leftrightarrow x^2-10x+8=0\Leftrightarrow\left\{{}\begin{matrix}x=5-căn17\\x=5+căn17\end{matrix}\right.\)
\(Vậy...\)
Đặt \(\left\{{}\begin{matrix}x+7=a\\x-8=b\end{matrix}\right.\) phương trình trở thành:
\(a^4+b^4=\left(a+b\right)^4\)
\(\Leftrightarrow a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
\(\Leftrightarrow2ab\left(2a^2+3ab+2b^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\\2a^2+3ab+b^2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\\\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-7\\x=8\end{matrix}\right.\)
Ta có:
\(\left(x-7\right)^4+\left(x-8\right)^2=\left(15-2x\right)^4\)
Dat \(x-7=a\). Khi do:
\(a^4+\left(a-1\right)^4=\left(2x-1\right)^4\)
\(\Leftrightarrow a^4+a^4-4a^3+6a^2-4a+1=16a^4-32a^3+24a^2-8a+1\)
\(\Leftrightarrow a\left(a-1\right)\left(7a^2-7a+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)
Dến dây bạn tu giải nhé,,,
\(4\left(\frac{x^2}{2}+5x+4\right)^2\)=\(4\left(2x+1\right)\left(x^2+8x+7\right)\)
\(\Leftrightarrow\left(x^2+10x+8\right)^2=4\left(2x+1\right)\left(x^2+8x+7\right)\)
dat \(2x+1=a,x^2+8x+7=b\) \(\Rightarrow a+b=x^2+10x+8\)
pt tro thanh
\(\left(a+b\right)^2=4ab\Rightarrow a^2+2ab+b^2-4ab=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\Leftrightarrow2x+1=x^2+8x+1\)
\(\Leftrightarrow x^2+6x=0\Leftrightarrow x\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
_đợi chút
chuyển vế có nhân tử chùg