K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

Ta có :

\(\left(x-1\right)^4+\left(5-x\right)^4=1^4+3^4\)

\(\Rightarrow\hept{\begin{cases}x-1=2\\5-x=3\end{cases}}\)hoặc\(\Rightarrow\hept{\begin{cases}x-1=3\\5-x=1\end{cases}}\)

\(\Rightarrow x=2\)hoặc\(\Rightarrow x=4\)

Vậy, \(\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

18 tháng 1 2018

\(\left(x-1\right)^4+\left(5-x\right)^4=82\)

\(\Leftrightarrow\left(x-1\right)^4+\left(x-5\right)^4=82\)

Đặt \(x-3=y\Rightarrow x=y+3\)

Thay \(x=y+3\)vào phương trình. Ta có:

\(\left(y+2\right)^4+\left(y-2\right)^4=82\)

\(\Leftrightarrow y^4+8y^3+24y^2+32y+16+y^4-8y^3+24y^2-32y+16=82\)

\(\Leftrightarrow2y^4+48y^2+32=82\)

\(\Leftrightarrow2y^4+48y^2+32-82=0\)

\(\Leftrightarrow2y^4+48y^2-50=0\)

\(\Leftrightarrow2\left(y^2-1\right)\left(y^2+25\right)=0\)

\(\Leftrightarrow2\left(y-1\right)\left(y+1\right)\left(y^2+25\right)=0\)

\(\orbr{\begin{cases}\orbr{\begin{cases}y-1=0\\y+1=0\end{cases}}\\y^2+25=0\left(y^2+25\ge25>0\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)\(\Rightarrow y=1\)hoặc \(y=-1\)

Nếu \(y=1\Rightarrow x=4\)

Nếu\(y=-1\Rightarrow x=2\)

Vậy x=4 hoặc x=2

NV
2 tháng 3 2021

Đặt \(t=x-4\)

\(\Rightarrow\left(t+2\right)^4+\left(t-2\right)^4=82\)

\(\Leftrightarrow t^4+24t^2-25=0\Rightarrow\left[{}\begin{matrix}t^2=1\\t^2=-25\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\left(x-4\right)^2=1\Rightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)

2 tháng 3 2021

Thật ra đặt cũng được, mà mình lười quá thì đành phanh toạch hết ra đi:vv

Ta có: \(\left(x-2\right)^4+\left(x-6\right)^4=82\)

\(\Leftrightarrow x^4-8x^3+24x^2-32x+16+x^4-24x^3+216x^2-864x+1296-82=0\)

<=> \(2x^4-32x^3+240x^2-896x+1230=0\)

<=> \(2\left(x-5\right)\left(x-3\right)\left(x^2-8x+41\right)=0\)

Vì \(x^2-8x+41\ne0\)

=> \(\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)

Vậy tập nghiệm của pt là: S={3;5}

9 tháng 3 2020

Những bài như thế này thì em chỉ cần nhớ hai điều:

+)Thứ nhất: \(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+a^4\)

+) Thứ hai : \(\left(-\frac{1}{2}+\frac{3}{2}\right):2=\frac{1}{2}\)

Giải:

Đặt : x = \(t-\frac{1}{2}\)

Ta có pt: \(\left(t-1\right)^4+\left(t+1\right)^4=82\)

<=> \(\left(t^4-4t^3+6t^2-4t+1\right)+\left(t^4+4t^3+6t^2+4t+1\right)=82\)

<=> \(2t^4+12t^2+2=82\)

<=> \(t^4+6t^2-40=0\)

<=> \(t^4+2.t^2.3+9=49\)

<=> \(\left(t^2+3\right)^2=7^2\)

<=> \(\orbr{\begin{cases}t^2+3=7\\t^2+3=-7\left(loai\right)\end{cases}}\)

<=> \(t^2=4\)

<=> \(t=\pm2\)

Với t = 2 ta có: \(x=2-\frac{1}{2}=\frac{3}{2}\)

Với t = -2 ta có: \(x=-2-\frac{1}{2}=-\frac{5}{2}\)

Vậy: 

9 tháng 3 2020

#Cô chi oi hình như phải đặt 

\(x=t+\frac{1}{2}\)mới ra được như này \(\left(t-1\right)\left(t+1\right)\) chứ cô 

17 tháng 1 2018

anh yêu em My

23 tháng 4 2015

x=3

hoặc

x=5

17 tháng 2 2017

Hồ Nguyện -bạn giải ra luôn đc ko ?

10 tháng 3 2020

\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)

\(ĐKXĐ:x\ne\pm2\)

Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)

=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)

\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)

\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)

=>  \(b=0;a=0\)

Bạn cùng trường :">

11 tháng 11 2016

 đó chính là -4 minh khong muon giai ra ta lau lam ban

11 tháng 11 2016

rút 4 ra ngoài nhan bạn  4(2(x+1/x)^2+(x^2+1/x^2)^2-(x^2+1/x^2)(x+1/x)^2=(x+4)^2 

mik xét cái này cho dễ nhìn nhan 

2(x+1/x)^2-(x^2+1/x^2)(x+1/x)^2

= (x+1/x)^2(2-x^2-1/x^2)

= -(x+1/x)^2(x^2-2+1/x^2)

= -(x+1/x)^2(x-1/x)^2=-(x^2-1/x^2)^2

thế ở trên ta có 

4(-(x^2-1/x^2)^2+(x^2+1/x^2)^2)=(x+4)^2 

4(-x^4+2-1/x^4+x^4+2+1/x^4)=x^2+8x+16

4.4=x^2+8x+16 

suy ra x^2+8x=0 

x(x+8)=0

suy ra x=0 hoặc x=-8 

mak nhìn để bài thì x=0 ko được nên x=-8

10 tháng 2 2019

a) (x+3)4+(x+5)4=16

<=>(x+3)4+(x+5)4=04+24

TH1: \(\left\{{}\begin{matrix}x+3=0\\x+5=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-3\end{matrix}\right.\Leftrightarrow x=-3\)

TH2:\(\left\{{}\begin{matrix}x+3=2\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)(loại)

b)(x-2)4+(x-3)4=1=04+14

TH1: \(\left\{{}\begin{matrix}x-2=0\\x-3=1\end{matrix}\right.\)loại

TH2: \(\left\{{}\begin{matrix}x-2=1\\x-3=0\end{matrix}\right.\)=>x=3.

c)(x+1)4+(x-3)4=82=34+(-1)4

làm tương tự => x=2.

d) làm tương tự câu b