Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007
2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)
2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007
= 1/1.2 - 1/2006.2007
=> A = (1/1.2 - 1/2006.2007):2
A = 1/4 - 1/1003.2007
Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007
=1/1-1/2007
= 2006/2007
thay vào phương trình ta có phương trình trở thành:
(1/4 - 1/1003.2007).x = 2006/2007
..........
còn lại bạn tính nhé
Bài này không tính nhé tth nghĩ nát óc mới ra :3
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}\right)x=1.2\left(3-0\right)+2.3\left(4-1\right)+...+2006+2007\left(2008-2005\right)\)\(3\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2005.2006.2007}\right)x=2\left(1.2\left(3-0\right)+2.3+...+2006+2007\right)\)
\(2\left(1.2.3+2.3.4-1.2.3+...+2006+2007.2008-2005.2006.2007\right)\)
Đến đây rồi tự làm tiếp đi nhé
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{2005.2006.2007}\)
\(B=1.2+2.3+3.4+....+2006.2007\)
Ta có : \(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2006.2007}\right)\)
\(B=1.2+2.3+3.4+....+2006.2007\)
\(=\frac{1.2.3+2.3.\left(4-1\right)+3.5.\left(5-2\right)+...+2006.2007.\left(2008-2005\right)}{3}\)
\(=\frac{1.2.3+2.3.4-1.2.3+3.4.5-...+2006.2007.2008-2005.2006.2007}{3}\)
\(=\frac{2006.2007.2008}{3}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)x=\frac{2006.2007.2008}{3}\)
\(\Rightarrow x=\frac{2006.2007.2008}{3}:\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)\right]\)(tự tính)
Ta có:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\); \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); ...; \(\frac{2}{2005.2006.2007}=\frac{1}{2005.2006}-\frac{1}{2006.2007}\)
\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)\)
\(A=\frac{1}{2}\left(\frac{1003.2007-1}{2006.2007}\right)\)
B=1.2+2.3+3.4+...+2006.2007=\(\frac{2006.2007.2008}{3}\)
Ta có: A.x=B => x=B:A = \(\frac{2006.2007.2008}{3}:\left\{\frac{1}{2}.\frac{1003.2007-1}{2006.2007}\right\}=\frac{2006.2007.2008}{3}.\frac{2.2006.2007}{1003.2007-1}\)
=> \(x=\frac{2.2006^2.2007^2.2008}{6039060}=2676.2007^2\)
ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007
2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)
2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007
= 1/1.2 - 1/2006.2007
=> A = (1/1.2 - 1/2006.2007):2
A = 1/4 - 1/1003.2007
Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007
=1/1-1/2007 = 2006/2007
thay vào ta được phương trình trở thành:
(1/4 - 1/1003.2007).x = 2006/2007
..........
Đặt: \(\left\{{}\begin{matrix}l_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2005.2006.2007}\\l_2=1.2+2.3+3.4+...+2006.2007\end{matrix}\right.\Leftrightarrow l_1.x=l_2\)
Ta có:
\(l_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2005.2006.2007}\)
\(l_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2005.2006}-\dfrac{1}{2006.2007}\right)\)
\(l_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2006.2007}\right)\)
\(l_2=1.2+2.3+3.4+...+2006.2007\)
\(3l_2=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+2006.2007.\left(2008-2005\right)\)
\(3l_2=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2006.2007.2008-2005.2006.2007\)
\(3l_2=2006.2007.2008\Leftrightarrow l_2=\dfrac{2006.2007.2008}{3}\)
Hay: \(\left[\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2006.2007}\right)\right].x=\dfrac{2006.2007.2008}{3}\)
Tới đây thì bấm máy tính là ra :V
Nhã Doanh, ngonhuminh, nguyen thi vang, Hoàng Anh Thư, Mashiro Shiina, Phạm Nguyễn Tất Đạt, F.C, Trần Thị Hồng Ngát, Mến Vũ, kuroba kaito, @Phùng Khánh Linh, Nguyễn Huy Tú, Lightning Farron, Hung nguyen, ...
\(\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)x=\frac{1}{3}\left(2014.2015.2016-2013.2014.2015........+2.3.4-1.2.3+1.2.3-0.1.2\right)\)
\(\left(\frac{1}{2}-\frac{1}{2014.2015}\right)x=\frac{1}{3}.2014.2015.2016\)
\(x=\frac{1}{3.2029104}.2014^2.2015^2.2016=\)
\(\left(\frac{1}{2}-\frac{1}{2014.2015}\right)x=\frac{1}{3}.2014.2015.2016\)
Đặt \(NCTK=VT\)
\(\Rightarrow2NCTK=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...\)
\(+\frac{1}{2005.2006}-\frac{1}{2006.2007}\)
\(\Rightarrow2NCTK=\frac{1}{2}-\)\(\frac{1}{2006.2007}\)
\(\Rightarrow NCTK=\frac{1}{4}-\frac{1}{2.2006.2007}\)
Đặt \(KN=1.2+2.3+...+2006.2007\)
\(3KN=1.2.3+2.3.\left(4-1\right)+...+2006.2007\left(2008-2005\right)\)
\(=2006.2007.2008\)
\(KN=\frac{2006.2007.2008}{3}\)
...