Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(x^2-2y^2-xy=0\)
<=> \(\left(x-2y\right)\left(x+y\right)=0\)
<=> \(\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)
Sau đó bạn thế vào PT dưới rồi tính
3. ĐKXĐ \(x\le1\); \(x+2y+3\ge0\)
.\(2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\)
<=> \(\left(2y^3-xy^2\right)+\left(x^2-4y^2\right)-\left(4x-8y\right)=0\)
<=> \(\left(x-2y\right)\left(-y^2+x+2y-4\right)=0\)
Mà \(-y^2+2y-4=-\left(y-1\right)^2-3\le-3\); \(x\le1\)nên \(-y^2+x+2y-4< 0\)
=> \(x=2y\)
Thế vào Pt còn lại ta được
\(\sqrt{\frac{1-x}{2}}+\sqrt{2x+3}=\sqrt{5}\)ĐK \(-\frac{3}{2}\le x\le1\)
<=> \(\frac{1-x}{2}+2x+3+2\sqrt{\frac{\left(1-x\right)\left(2x+3\right)}{2}}=5\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}x+\frac{3}{2}\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}\left(x-1\right)\)
<=> \(\orbr{\begin{cases}x=1\\\sqrt{2\left(2x+3\right)}=\frac{3}{2}\sqrt{1-x}\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{5}\end{cases}}\)(TMĐK )
Vậy \(\left(x;y\right)=\left(1;\frac{1}{2}\right),\left(-\frac{3}{5};-\frac{3}{10}\right)\)
\(\begin{cases}xy\left(x+1\right)=x^3+y^2+x-y\left(1\right)\\3y\left(2+\sqrt{9x^2+3}\right)+\left(4y+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\left(2\right)\end{cases}\)
Điều kiện xác định : mọi \(x\in Z\)
Ta có : \(xy\left(x+1\right)=x^3+y^2+x-y\Leftrightarrow x^3-x^2y+y^2-xy+x-y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y-1\right)=0\Leftrightarrow\begin{cases}y=x\\y=x^2+1\end{cases}\)
Với \(y=x^2+1\) thay vào phương trình (2) ta được :
\(3\left(x^2+1\right)\left(2+\sqrt{9x^2+3}\right)+\left(4x^2+6\right)\left(\sqrt{1+x+x^2}+1\right)=0\)
Giải ra ta có phương trình vô nghiệm
Với y=x, thay vào phương trình thứ 2, ta được :
\(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\)
\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=-\left(2x+1\right)\left(\sqrt{3+\left(2x+1\right)^2}+2\right)\)
\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=\left(-2x-1\right)\left(\sqrt{3+\left(-2x-1\right)^2}+2\right)\)
Xét hàm số \(f\left(t\right)=t\left(\sqrt{t^2+2}+2\right)\)
Ta có : \(f'\left(t\right)=\sqrt{t^2+2}+2+\frac{t^2}{\sqrt{t^2+2}}>0\) suy ra hàm số đồng biến
Từ đó suy ra \(3x=-2x\Leftrightarrow x=-\frac{1}{5}\)
Vậy hệ phương trình có nghiệm \(\left(x,y\right)=\left(-\frac{1}{5};-\frac{1}{5}\right)\)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CALCULARTOR