Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
[3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (y – x)2
= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : [-(x – y)]2
= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (x – y)2
= 3(x – y)4 : (x – y)2 + 2(x – y)3 : (x – y)2 + [– 5(x – y)2 : (x – y)2]
= 3(x – y)2 + 2(x – y) – 5
Bài 65: (SGK/29):
Cách 1:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
= [ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (x-y)2
= 3.(x-y)4 : (x-y)2 + 2.(x-y)3 : (x-y)2 - 5.(x-y)2 : (x-y)2
= 3.(x-y)2 + 2.(x-y) - 5
Cách theo SGK:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
Đặt (x-y) = z => (y-x) = z
=> (x-y)2 = z2 = (y-x)2 = (-z2) = z2
Ta có: ( 3.z4 + 2.z3 - 5.z2) : z2
= (3z4 : z2) + (2z3 : z2) - (5z2 : z2)
= 3z2 + 2z - 5
Cách 2:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
= (x-y)2 [ 3(x-y)2 + 2(x-y) - 5] : (x-y)2
= 3(x-y)2 + 2(x-y) - 5
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)
Đặt
\(y=x^2-1\)
\(\Rightarrow x^2=y-1\) và
\(x=\sqrt{y}-1\)
Phương trình tương đương
\(y^2+3y\left(\sqrt{y}-1\right)+2\left(\sqrt{y}-1\right)^2\)
\(=y^2+2\cdot\dfrac{3}{2}\cdot y\cdot\left(\sqrt{y}-1\right)+\dfrac{9}{4}\left(\sqrt{y}-1\right)^2=\dfrac{1}{4}\left(\sqrt{y}-1\right)^2\)
\(\Rightarrow\left(y+\dfrac{3}{2}\left(\sqrt{y}-1\right)\right)^2=\left[\dfrac{1}{2}\cdot\left(\sqrt{y}-1\right)\right]^2\)
\(\Rightarrow y+\dfrac{3}{2}\left(\sqrt{y}-1\right)=\dfrac{1}{2}\cdot\left(\sqrt{y}-1\right)\)
\(\Rightarrow y+\sqrt{y}+1=0\)
Mà \(y+\dfrac{1}{2}\cdot2\cdot\sqrt{y}+\dfrac{1}{4}+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
=> Không có y thỏa mãn
\(\Rightarrow PTVN\)
b) Đặt \(x-7=a\) ta có:
\(\left(a+1\right)^4+\left(a-1\right)^4=16\)
\(\Leftrightarrow\)\(a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=16\)
\(\Leftrightarrow\)\(2a^4+12a^2+2-16=0\)
\(\Leftrightarrow\)\(2\left(a^4+6a^2-7\right)=0\)
\(\Leftrightarrow\)\(a^4+6a^2-7=0\)
\(\Leftrightarrow\)\(\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
Vì \(a^2+7>0\) nên \(\orbr{\begin{cases}a-1=0\\a+1=0\end{cases}}\)
Thay trở lại ta có: \(\orbr{\begin{cases}x-8=0\\x-6=0\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Vậy...
a) \(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+4\right)-12=0\)
Đặt \(x^2+x=t\),ta có :
\(t\left(t+4\right)-12=0\)
\(\Leftrightarrow t^2+4t-12=0\)
\(\Leftrightarrow\left(t+6\right)\left(t-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-6=0\\t-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-6=0\\x^2+x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)\left(x+3\right)=0\\\left(x-1\right)\left(x+2\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\in\left\{2;-3\right\}\\x\in\left\{1;-2\right\}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-3;1;-2\right\}\)
Đặt \(\left(x^2+x\right)=y\)
\(=>y^2+4y-12=0=>y_1=-6,y_2=2\)
zới y=-6 thì \(x^2+x+6=0\left(zô\right)nghiệm\)
zới y=2 thì \(x^2+x-2=0\)có nghiệm là -2 zà 1