Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
<=> 7 - 2x - 4 = -x - 4
<=> -2x + x = -4 -7 + 4
<=> -x = -7
<=> x = 7
Vậy S = { 7 }
2.
<=> \(\frac{2\left(3x-1\right)}{6}\)= \(\frac{3\left(2-x\right)}{6}\)
<=> 2( 3x - 1 ) = 3( 2 - x )
<=> 6x -2 = 6 - 3x
<=> 6x + 3x = 6 + 2
<=> 9x = 8
<=> x = \(\frac{8}{9}\)
Vậy S = \(\left\{\frac{8}{9}\right\}\)
3.
<=> \(\frac{6x+10}{3}-\frac{x}{2}=5-\frac{3x+3}{4}\)
<=> \(\frac{4\left(6x+10\right)}{12}-\frac{6x}{12}=\frac{60}{12}-\frac{3\left(3x+3\right)}{12}\)
<=> 4( 6x + 10 ) - 6x = 60 - 3( 3x + 3 )
<=> 24x + 40 - 6x = 60 - 9x -9
<=> 18x + 40 = 51 - 9x
<=> 18x + 9x = 51 - 40
<=> 27x = 11
<=> x = \(\frac{11}{27}\)
Vậy S = \(\left\{\frac{11}{27}\right\}\)
<=>
\(\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{12}{x^2-9}\)
\(\Leftrightarrow\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{12}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{\left(x+3\right)^2-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{12}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow\left(x+3\right)^2-\left(x-3\right)^2=12\)
\(\Leftrightarrow x^2+6x+9-\left(x^2-6x+9\right)=12\)
\(\Leftrightarrow x^2+6x+9-x^2+6x-9=12\)
\(\Leftrightarrow12x=12\)
\(\Rightarrow x=1\)
\(\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{12}{x^2-9}.\)
\(\Leftrightarrow\frac{\left(x+3\right)^2}{x^2-9}-\frac{\left(x-3\right)^2}{x^2-9}=\frac{12}{x^2-9}\)
\(\Leftrightarrow\left(x+3\right)^2-\left(x-3\right)^2=12\)
\(\Leftrightarrow x^2+6x+9-\left(x^2-6x+9\right)=12\)
\(\Leftrightarrow x^2+6x+9-x^2+6x-9=12\)
\(\Leftrightarrow12x=12\)
\(\Leftrightarrow x=1\)
\(\frac{\left(x-2\right)^2+3x+6}{x^2-4}=\frac{x^2-11}{x^2-4}\)
\(\Rightarrow x^2-x+10=x^2-11\Rightarrow10-x=-11\Rightarrow x=21\)
1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)
A . 3x + 2(x + 1) = 6x - 7
<=> 3x + 2x + 2 = 6x -7
<=> 5x - 6x = -7 - 2
<=> -x = -9
<=> x =9
B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)
=> 3(x +3) < 5(5 -x)
<=> 3x+9 < 25 - 5x
<=> 3x + 5x < 25 - 9
<=> 8x < 16
<=> x < 2
C . \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2+x-4x-4_{ }}\)= \(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)= \(\frac{2}{x-4}\)
<=> 5(x - 4) + 2x = 2(x +1)
<=> 5x - 20 + 2x = 2x + 2
<=>7x - 2x = 2 + 20
<=> 5x = 22
<=> x =\(\frac{22}{5}\)
Quy đồng tí là ra.. :>>
\(A=\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\)
\(A=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\)
\(A=\frac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\)
\(A=\frac{4+4x^4+4-4^2x}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}\)
\(A=\frac{8}{1-x^8}+\frac{8}{1+x^8}=\frac{8+8x^8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}=\frac{16}{1-x^{16}}\)
Chúc bạn học tốt ~
\(\frac{x+2+1}{x+2}-\frac{x+3+1}{x+3}=\frac{x+4+1}{x+4}-\frac{x+5+1}{x+5}\)
=> \(1+\frac{1}{x+2}-1-\frac{1}{x+3}=1+\frac{1}{x+4}-1-\frac{1}{x+5}\)
=> \(\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{\left(x+4\right)\left(x+5\right)}\)
Đến đây bạn tự giải tiếp nk