Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}=\frac{-3}{4}\left(x\ne-3;x\ne2\right)\)
\(\Leftrightarrow\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x^2-4}{\left(x-2\right)\left(x+3\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)
<=> 4x-16=-3x+6
<=> 4x-16+3x-6=0
<=> 7x-22=0
<=> 7x=22
<=> \(x=\frac{22}{7}\)(TMĐK)
\(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\frac{\frac{5x+6-2x}{5}}{14}-\frac{x+4}{24}=\frac{\frac{35x+10+9-3x}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\frac{\frac{3x+6}{5}}{14}-\frac{x+4}{24}=\frac{\frac{32x+19}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\left(\frac{3x+6}{5}\cdot\frac{1}{14}\right)-\frac{x+4}{24}=\left(\frac{32x+19}{5}\cdot\frac{1}{12}\right)+\frac{2}{3}\)(CHIA CHO 14 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/14,) (CHIA CHO 12 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/12)\(\Leftrightarrow\frac{3x+6}{70}-\frac{x+4}{24}-\frac{32x+19}{60}-\frac{2}{3}=0\)\(\Leftrightarrow\frac{12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-2\cdot280}{840}=0\)
\(\Leftrightarrow12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-560=0\)
\(\Leftrightarrow36x+72-35x-140-448x-266-560=0\)
\(\Leftrightarrow-447x-894=0\Leftrightarrow x=\frac{-894}{447}=-2\)(NHẬN)
Vậy tập nghiệm của phương trình là : S = { -2 }
tk cho mk nka ! ! ! th@nks ! ! !
\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\left(x\ne-3;x\ne1\right)\)
\(\Leftrightarrow\frac{x+2}{x+3}-\frac{x+1}{x-1}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2}{\left(x+3\right)\left(x-1\right)}-\frac{x^2+4x+3}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2-x^2-4x-3-4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3x-9}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3}{x-1}=0\)
=> PT vô nghiệm
câu a dòng 2 sai r kìa bạn, phải là :\(1\cdot\left(x+5\right)\cdot\left(x-5\right)\) chứ không phải \(2\cdot\left(x+5\right)\cdot\left(x-5\right)\) nên cả câu a sai r kìa
a)
\(\frac{4}{x-5}+\frac{9}{x+5}=\frac{1}{2}\\ \Leftrightarrow\frac{4x+20}{2\cdot\left(x^2-25\right)}+\frac{9x-40}{2\cdot\left(x^2-25\right)}-\frac{x^2-25}{2\cdot\left(x^2-25\right)}=0\\ \Leftrightarrow\frac{4x+20+9x-40-x^2+25}{2\cdot\left(x^2-25\right)}=0\\ \Leftrightarrow\frac{13x+5-x^2}{2\cdot\left(x^2-25\right)}=0\\ \Rightarrow13x+5-x^2=0\\ \Rightarrow x=\left[{}\begin{matrix}-\frac{-13+3\sqrt{21}}{2}\\-\frac{-13-3\sqrt{21}}{2}\end{matrix}\right.\)
b)
\(x^4-4x^2+3=0\\ \Leftrightarrow\left(x^2-3\right)\cdot\left(x^2-1\right)=0\\ \Rightarrow x=\left[{}\begin{matrix}\sqrt{3}\\-\sqrt{3}\\1\\-1\end{matrix}\right.\)
a,\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)
Ta có: \(x^2+5\ge0\) (vô lí)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-6\end{cases}}\)
Vậy ....
c, \(4x^2\left(x-1\right)-x+1=0\)
\(\Leftrightarrow4x^3-4x^2-x+1=0\)
\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x^2-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x^2=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\frac{1}{2}\\x=1\end{cases}}\)
Vậy ....
\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)
ĐKXĐ: \(x\ne1,x\ne-3\)
PT đã cho \(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow x^2+x-2-x^2-4x-3=4\Leftrightarrow3x=-1\Leftrightarrow x=\frac{-1}{3}\)
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
Điều kiện xác định x khác 1
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\Leftrightarrow\frac{1.\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow x^2+x+1-3x^2=2x^2-2x\)
\(\Leftrightarrow x^2-3x^2-2x^2+x+2x+1=0\)
\(\Leftrightarrow-4x^2+2x+1=0\)
\(\Leftrightarrow\left(-2x-1\right)^2=0\)
\(\Leftrightarrow-2x-1=0\)
\(\Rightarrow x=-0,5\)(thỏa mãn)
d, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+10=0\) (Vì \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\) ≠ 0)
\(\Leftrightarrow x=-10\)
Vậy x = -10 là nghiệm của phương trình.
\(ĐKXĐ:x\ne2;4\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2=\frac{16}{5}\left(x-2\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x+12+x^2-4x+4=\frac{16}{5}\left(x^2-6x+8\right)\)
\(\Leftrightarrow2x^2-11x+16=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)
\(\Leftrightarrow\frac{6}{5}x^2-\frac{41}{5}x+\frac{48}{5}=0\)
\(\Leftrightarrow6x^2-41x+48=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{16}{3}\\x=\frac{3}{2}\end{cases}}\)
rõ hơn đi bạn