Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\)
\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{16}{x^2-1}\)
\(\Rightarrow\left(x+1\right)^2-\left(x-1\right)^2=16\)
\(\Rightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=16\)
\(\Rightarrow2\left(2x\right)=16\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
vậy \(x=4\)
\(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)
\(\frac{6x+1}{\left(x-2\right)\left(x-5\right)}+\frac{5\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=\frac{3\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}\)
\(\Rightarrow6x+1+5x-5=3x-6\)
\(\Rightarrow11x-3x=-6+4\)
\(\Rightarrow8x=-2\)
\(\Rightarrow x=\frac{-1}{4}\)
3) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\frac{x^2+x+1}{x^3-1}+\frac{\left(2x^2-5\right)}{x^3-1}=\frac{4\left(x-1\right)}{x^3-1}\)
\(\Rightarrow x^2+x+1+2x^2-5=4x-4\)
\(\Rightarrow3x^2-3x=-4+4\)
\(\Rightarrow3x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
2. \(\frac{1}{x-1}-\frac{7}{x-2}=\frac{1}{\left(x-1\right)\left(2-x\right)}\) (ĐKXĐ:\(x\ne1,x\ne2\))
\(\Leftrightarrow\frac{1}{x-1}+\frac{7}{2-x}=\frac{1}{\left(x-1\right)\left(2-x\right)}\)
\(\Leftrightarrow\frac{2-x+7\left(x-1\right)}{\left(x-1\right)\left(2-x\right)}=\frac{1}{\left(x-1\right)\left(2-x\right)}\)
\(\Rightarrow2-x+7\left(x-1\right)=1\)
\(\Leftrightarrow2-x+7x-7=1\)
\(\Leftrightarrow-x+7x=1-2+7\)
\(\Leftrightarrow6x=6\)
\(\Leftrightarrow x=1\) (Không thỏa mãn ĐKXĐ)
Vậy phương trình trên vô nghiệm
ko phan tich duoc nha bn
chuc bn hoc gioi
happy new year
\(a.\frac{x-6}{x-4}=\frac{x}{x-2}\\\Leftrightarrow \frac{\left(x-6\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}=\frac{x\left(x-4\right)}{\left(x-4\right)\left(x-2\right)}\\\Leftrightarrow \left(x-6\right)\left(x-2\right)=x\left(x-4\right)\\\Leftrightarrow \left(x-6\right)\left(x-2\right)-x\left(x-4\right)=0\\ \Leftrightarrow x^2-2x-6x+12-x^2+4x=0\\\Leftrightarrow -4x+12=0\\\Leftrightarrow -4x=-12\\ \Leftrightarrow x=3\)
\(b.1+\frac{2x-5}{x-2}-\frac{3x-5}{x-1}=0\\ \Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}+\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(3x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)+\left(2x-5\right)\left(x-1\right)-\left(3x-5\right)\left(x-2\right)=0\\ \Leftrightarrow x^2-x-2x+3+2x^2-2x-5x+5-3x^2+6x+5x-10=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \)
Bài 3 :
Ta có : \(A=x^2+x+2012\)
=> \(A=x^2+x+\left(\frac{1}{2}\right)^2+\frac{8047}{4}\)
=> \(A=\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\)
- Ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\ge\frac{8047}{4}\forall x\)
- Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\)
<=> \(x=-\frac{1}{2}\)
Vậy MinA = \(\frac{8047}{4}\) <=> x = \(-\frac{1}{2}\) .
Bài 1 :
a, Ta có : \(\left(3x-2\right)\left(4+5x\right)=0\)
=> \(\left[{}\begin{matrix}3x-2=0\\4+5x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=2\\5x=-4\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{4}{5}\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(\frac{2}{3}\), x = \(-\frac{4}{5}\) .
b,- ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
=> \(x\ne\pm1\)
Ta có : \(\frac{x+1}{x-1}-\frac{4}{x+1}=\frac{3-x^2}{1-x^2}\)
=> \(\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}=\frac{x^2-3}{x^2-1}\)
=> \(\left(x+1\right)^2-4\left(x-1\right)=x^2-3\)
=> \(x^2+2x+1-4x+4=x^2-3\)
=> \(-2x=-3-5\)
=> \(x=4\left(TM\right)\)
Vậy phương trình có nghiệm là x = 4 .
c, Ta có : \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}-\frac{2-10x}{2014}\)
=> \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}+\frac{10x-2}{2014}\)
=> \(\frac{10x+3}{2009}+1+\frac{10x-1}{2013}+1=\frac{10x+1}{2011}+1+\frac{10x-2}{2014}+1\)
=> \(\frac{10x+3}{2009}+\frac{2009}{2009}+\frac{10x-1}{2013}+\frac{2013}{2013}=\frac{10x+1}{2011}+\frac{2011}{2011}+\frac{10x-2}{2014}+\frac{2014}{2014}\)
=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}=\frac{10x+2012}{2011}+\frac{10x+2012}{2014}\)
=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}-\frac{10x+2012}{2011}-\frac{10x+2012}{2014}=0\)
=> \(\left(10x+2012\right)\left(\frac{1}{2009}+\frac{1}{2013}-\frac{1}{2011}-\frac{1}{2014}\right)=0\)
=> \(10x+2012=0\)
=> \(x=-\frac{2012}{10}\)
Vậy phương trình có nghiệm là x = \(-\frac{2012}{10}\) .
Bài 3:
Giải:
Ta có : A = x2 + x + 2012
= x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}\) + \(\frac{8047}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{8047}{4}\) ≥ \(\frac{8047}{4}\)
⇒ Amin = \(\frac{8047}{4}\) ⇔ (x + \(\frac{1}{2}\))2 = 0 ⇔ x = \(-\frac{1}{2}\)
Vậy Amin = \(\frac{8047}{4}\) tại x = \(-\frac{1}{2}\)
Chúc bạn học tốt@@
Bài 1:
1, \(\frac{2x-5}{x+5}=3\) (ĐKXĐ: x \(\ne\) -5)
\(\Leftrightarrow\) \(\frac{2x-5}{x+5}=\frac{3\left(x+5\right)}{x+5}\)
\(\Rightarrow\) 2x - 5 = 3(x + 5)
\(\Leftrightarrow\) 2x - 5 = 3x + 15
\(\Leftrightarrow\) 2x - 3x = 15 + 5
\(\Leftrightarrow\) -x = 20
\(\Leftrightarrow\) x = -20 (TMĐKXĐ)
Vậy S = {-20}
2, \(\frac{4}{x+1}=\frac{3}{x-2}\) (ĐKXĐ: x \(\ne\) -1; x \(\ne\) 2)
\(\Leftrightarrow\) \(\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\) 4(x - 2) = 3(x + 1)
\(\Leftrightarrow\) 4x - 8 = 3x + 3
\(\Leftrightarrow\) 4x - 3x = 3 + 8
\(\Leftrightarrow\) x = 11 (TMĐKXĐ)
Vậy S = {11}
3, \(\frac{5}{2x-3}=\frac{1}{x-4}\) (ĐKXĐ: x \(\ne\) \(\frac{3}{2}\); x \(\ne\) 4)
\(\Leftrightarrow\) \(\frac{5\left(x-4\right)}{\left(2x-3\right)\left(x-4\right)}=\frac{2x-3}{\left(2x-3\right)\left(x-4\right)}\)
\(\Rightarrow\) 5(x - 4) = 2x - 3
\(\Leftrightarrow\) 5x - 20 = 2x - 3
\(\Leftrightarrow\) 5x - 2x = -3 + 20
\(\Leftrightarrow\) 3x = 17
\(\Leftrightarrow\) x = \(\frac{17}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{17}{3}\)}
Bài 2:
1, \(\frac{1}{x-1}+\frac{2}{x+1}=\frac{5x-3}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)
\(\Leftrightarrow\) \(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{5x-3}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow\) x + 1 + 2(x - 1) = 5x - 3
\(\Leftrightarrow\) x + 1 + 2x - 2 = 5x - 3
\(\Leftrightarrow\) 3x - 1 = 5x - 3
\(\Leftrightarrow\) 3x - 5x = -3 + 1
\(\Leftrightarrow\) -2x = -2
\(\Leftrightarrow\) x = 1 (KTM)
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
2, \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\) (ĐKXĐ: x \(\ne\) 2; x \(\ne\) 0)
\(\Leftrightarrow\) \(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow\) x(x + 2) - x + 2 = 2
\(\Leftrightarrow\) x2 + 2x - x + 2 = 2
\(\Leftrightarrow\) x2 + x = 2 - 2
\(\Leftrightarrow\) x2 + x = 0
\(\Leftrightarrow\) x(x + 1) = 0
\(\Leftrightarrow\) x = 0 hoặc x + 1 = 0
\(\Leftrightarrow\) x = 0 và x = -1
Ta có: x = 0 KTM đkxđ
\(\Rightarrow\) x = -1
Vậy S = {-1}
3, \(\frac{5}{x-3}-\frac{3}{x+3}=\frac{3x}{x^2-9}\) (ĐKXĐ: x \(\ne\) \(\pm\) 3)
\(\Leftrightarrow\) \(\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow\) 5(x + 3) - 3(x - 3) = 3x
\(\Leftrightarrow\) 5x + 15 - 3x + 9 = 3x
\(\Leftrightarrow\) 2x + 24 = 3x
\(\Leftrightarrow\) 2x - 3x = 24
\(\Leftrightarrow\) -x = 24
\(\Leftrightarrow\) x = -24 (TMĐKXĐ)
Vậy S = {-24}
Chúc bn học tốt!!
Mình tính mãi vẫn có chỗ sai, mong bạn thông cảm!!
Mình bt mình sai đâu r Garuda
câu 3 bài 3 cuối có cái đoạn 2x + 24 = 3x
\(\Leftrightarrow\) 2x - 3x = -24 (đoạn kia mình ghi là 24 nên quên không đổi dấu)
\(\Leftrightarrow\) -x = -24
\(\Leftrightarrow\) x = 24
Vậy S = {24}
(mình sửa lại rồi nha, chắc hết chỗ sai rồi)
\(\Leftrightarrow\frac{1}{9}x^2-4-\frac{1}{9}\left(x^2+\frac{4}{5}x+\frac{4}{25}\right)=0\)
\(\Leftrightarrow-4-\frac{4}{45}x-\frac{4}{225}=0\)
\(\Rightarrow x=-\frac{226}{5}\)
a) \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)ĐKXĐ : \(x\ne1;-3\)
\(\Leftrightarrow\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}=\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{2x^2+6x+4}{\left(x-1\right)\left(x+3\right)}=\frac{2x^2-7x+5}{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow2x^2+6x+4=2x^2-7x+5\)
\(\Leftrightarrow2x^2+5x+4-2x^2+7x-5=0\)
\(\Leftrightarrow12x-1=0\)
\(\Leftrightarrow x=\frac{1}{12}\)( thỏa mãn ĐKXĐ )
b) c) tương tự
Theo bài ra ,ta có :
\(\frac{2}{x+1}-\frac{3}{x-1}=5\)
\(\Leftrightarrow2\left(x-1\right)-3\left(x+1\right)=5\left(x^2-1\right)\)
\(\Leftrightarrow2x-2-3x-3=5x^2-5\)
\(\Leftrightarrow-5x^2-x-5+5=0\)
\(\Leftrightarrow-5x^2-x=0\)
\(\Leftrightarrow x=0\)
Vậy S={0}
Chúc bạn học tốt =))
\(\frac{2\left(x-1\right)-3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=5\)
Đk x khác +-1
\(\Leftrightarrow2x-2-3x-3=5x^2-5\)
\(\Leftrightarrow5x^2-x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{5}\end{cases}}\)nhận hết
Vậy S={0,1/5}
chúc may mắn